
www.manaraa.com

University of Tennessee, Knoxville University of Tennessee, Knoxville

TRACE: Tennessee Research and Creative TRACE: Tennessee Research and Creative

Exchange Exchange

Masters Theses Graduate School

5-2014

R-FAP: Rapid Functional Annotation of Prokaryotes Using Taxon-R-FAP: Rapid Functional Annotation of Prokaryotes Using Taxon-

specific Pan-genomes and 10-mer Peptides specific Pan-genomes and 10-mer Peptides

Jordan Matthew Utley
University of Tennessee - Knoxville, jutley6@vols.utk.edu

Follow this and additional works at: https://trace.tennessee.edu/utk_gradthes

 Part of the Bioinformatics Commons, Biology Commons, Computational Biology Commons, and the

Genomics Commons

Recommended Citation Recommended Citation
Utley, Jordan Matthew, "R-FAP: Rapid Functional Annotation of Prokaryotes Using Taxon-specific Pan-
genomes and 10-mer Peptides. " Master's Thesis, University of Tennessee, 2014.
https://trace.tennessee.edu/utk_gradthes/2780

This Thesis is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and
Creative Exchange. It has been accepted for inclusion in Masters Theses by an authorized administrator of TRACE:
Tennessee Research and Creative Exchange. For more information, please contact trace@utk.edu.

https://trace.tennessee.edu/
https://trace.tennessee.edu/
https://trace.tennessee.edu/utk_gradthes
https://trace.tennessee.edu/utk-grad
https://trace.tennessee.edu/utk_gradthes?utm_source=trace.tennessee.edu%2Futk_gradthes%2F2780&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/110?utm_source=trace.tennessee.edu%2Futk_gradthes%2F2780&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/41?utm_source=trace.tennessee.edu%2Futk_gradthes%2F2780&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/28?utm_source=trace.tennessee.edu%2Futk_gradthes%2F2780&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/30?utm_source=trace.tennessee.edu%2Futk_gradthes%2F2780&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:trace@utk.edu

www.manaraa.com

To the Graduate Council:

I am submitting herewith a thesis written by Jordan Matthew Utley entitled "R-FAP: Rapid

Functional Annotation of Prokaryotes Using Taxon-specific Pan-genomes and 10-mer Peptides."

I have examined the final electronic copy of this thesis for form and content and recommend

that it be accepted in partial fulfillment of the requirements for the degree of Master of Science,

with a major in Life Sciences.

Loren J. Hauser, Major Professor

We have read this thesis and recommend its acceptance:

Elizabeth Fozo, Brian O'Meara, Chongle Pan

Accepted for the Council:

Carolyn R. Hodges

Vice Provost and Dean of the Graduate School

(Original signatures are on file with official student records.)

www.manaraa.com

R-FAP: Rapid Functional Annotation of Prokaryotes

Using Taxon-specific Pan-genomes and 10-mer Peptides

A Thesis Presented for the

Master of Science

Degree

The University of Tennessee, Knoxville

Jordan Matthew Utley

May 2014

www.manaraa.com

ii

Copyright © 2014 by Jordan M. Utley

All rights reserved.

www.manaraa.com

iii

Acknowledgements and Dedication

There are a great many people to whom I owe my appreciation for being able to complete

this thesis. First, my advisor, Dr. Loren Hauser, has been an incomparable source of

insight regarding both this thesis as well as the field of biology as a whole.

Secondly, Dr. Harry Richards, who originally recruited me to the University of

Tennessee, has been an unwavering source of guidance and encouragement during my

time here.

Thirdly, my committee members, Drs. Brian O’Meara, Elizabeth Fozo, and Chongle Pan

have been indispensable with their guidance, support, and patience throughout this

process.

Additionally, Miriam Land, J.J. Chai, Dylan Storey, and many other colleagues in the

Scalable Computing a Leading-Edge Innovative Technologies (SCALE-IT) fellowship,

the Genome Science and Technology (GST) program, and Oak Ridge National

Laboratory have all been wonderful sources of both practical as well as conceptual

advice.

Denise Koessler—as a role model, a colleague, and a close personal friend—has helped

shape my understanding and love of interdisciplinary collaboration through partnerships

on multiple projects during my time at the University of Tennessee.

My friends Patrick Taylor, Lane Carasik, Sara Konsavage, Jonathan Hopper, Jacob

Hassman, Coleman Garner, and numerous others have sustained me on this path in

countless intangible but nonetheless invaluable ways.

And finally, my loving partner, Noah Mayhew, has been my rock through my time in

graduate school, sharing in the joys and supporting me through the frustrations.

This thesis is gratefully dedicated to all of these individuals who have had a hand in my

success.

www.manaraa.com

iv

Abstract

The growing implementation of next-generation sequencing technologies presents

numerous fields with the opportunity to identify bacteria in near real-time. Fields such as

counter-terrorism, forensics, medicine, and even microbial ecology are positioned to

benefit from such advances and implementation. However, with the ability to rapidly

produce high-quality sequence data comes the need to interpret this data as quickly as it

is produced. While gene prediction algorithms have kept pace, functional prediction

methods have not.

To bypass the need for large-scale queries to multiple databases for each newly-

sequenced genome, the project detailed herein seeks to identify the genes shared within a

taxonomic group using the pan-genome for that group. Doing so allows the pan-genome

to be queried against this set of databases a single time, then rapidly searched with new

genomes using k-mer peptide matching to make functional predictions.

Thirty-one strains from Salmonella enterica subsp. enterica were used to build the

pan-genome for this taxon as a test model. Proteins in a new genome could then be

matched with complete consistence to the resulting database in a matter of seconds (per

genome) using a k-mer peptide search algorithm. This represents a major advancement in

annotation speed over existing pipelines.

www.manaraa.com

v

Table of Contents

Chapter 1 Introduction and General Information .. 1

Background: Addressing New Threats ... 1
Challenges ... 2
Solutions ... 2

Chapter 2 Literature Review .. 4
Genome Annotation: Genes and Functions .. 5

Gene prediction. .. 5

Function prediction. .. 6

Pan-genomes ... 7
Average Nucleotide Identity (ANI) and phylogenetic breadth. 7
Protein families: orthologs vs. paralogs. ... 9

Salmonella enterica: A Test-bed ... 10

Classification and Identification via k-mer Matching ... 10
Chapter 3 Materials and Methods .. 13

Building the Pan-genome of Salmonella enterica subsp. enterica 13
Determining phylogenetic breadth of representative strains. 13
Determining protein families using OrthoMCL. .. 14

Building consensus sequences with Muscle and most-common residues. 15

Eliminating redundant sequences and annotating the database. 16
Searching the Pan-genome with Query Protein Sequences Using K-mer Peptides 17

Identifying protein-coding, tRNA, and rRNA genes in novel query genomes. 17

Using Simrank to match query proteins to database sequences. 17
Identifying and annotating novel proteins in query genomes. 18

Testing R-FAP against existing pipelines: speed and accuracy. 18
Chapter 4 Results, Discussion, and Recommendations ... 20

The Pan-genome Assembly Process ... 20

R-FAP as a Tool for Function Calling and Annotation .. 21
Discussion and Recommendations ... 22

Thresholds and accuracy. .. 22

Implications... 23
Implementation. .. 24

List of References ... 26

Appendices .. 35
Appendix A: Tables .. 36
Appendix B: Figures ... 38
Appendix C: The R-FAP Pan-genome Assembly Source Code 43
Appendix D: The R-FAP Annotation Tool Source Code ... 50

Vita .. 54

www.manaraa.com

vi

List of Tables

Table 1. Comparison of annotation pipelines. .. 36

Table 2. Strains included in the pan-genome database. .. 37

www.manaraa.com

vii

List of Figures

Figure 1. Building a hypothetical pan-genome in concept. .. 38

Figure 2. Minimizing the false positive count and the false negative rate. 39
Figure 3. Outline of the pan-genome assembly workflow. ... 40
Figure 4. The phylogenetic tree of the 31 S. enterica strains. ... 41
Figure 5. Functional prediction of proteins using R-FAP. ... 42

www.manaraa.com

1

Chapter 1

Introduction and General Information

Background: Addressing New Threats

The threats of epidemics and pathogen-based bioweapon terrorist attacks have

been brought to the forefront of the public’s attention several times over the last decade.

Outbreaks of Severe Acute Respiratory Syndrome (SARS) (Lee, et al., 2003; Marra, et

al., 2003) and various strains of influenza (The WHO Consultation on Human Influenza

A/H5, 2005; Smith, et al., 2009), reports of increasing antibiotic resistance in various

bacterial pathogens (Goldstein, et al., 2012; Ohnishi, et al., 2011), and the mail-borne

anthrax attacks following the events of 9/11 have all demonstrated our vulnerability to

such threats and the need for a rapid response involving the emerging field of microbial

forensics (Budowle, Murch, & Chakrabort, 2005). The first step in such a response is the

identification of the responsible pathogen, and by necessity this step must be rapid.

To this end, the advent of ever-faster sequencing technologies now allows a novel

prokaryotic genome to be fully sequenced at 100x coverage and assembled in a matter of

a few hours (Loman, et al., 2012). Furthermore, gene calling algorithms now take mere

minutes per genome (Hyatt, et al., 2010), thus keeping pace with sequencing needs and

technology. This technology is currently being put to the test at the University of

California-Davis, where Dr. Bart Weimer and colleagues are funded by the US Food and

Drug Administration to sequence the genomes of 100,000 foodborne pathogenic strains

over the course of four years.

www.manaraa.com

2

Challenges

 However, while sequencing and gene-calling technologies are now fast enough to

meet this challenge, current pipelines for functional annotation are not, as they rely on

search to multiple database such as Pfam (Finn, et al., 2014), InterPro (Hunter, et al.,

2012), and the NCBI’s non-redundant (NR) protein database Even worse, some are

hosted on remote servers and run in batches, which can delay results by weeks. Indeed,

the Rapid Annotations using Subsystems Technology (RAST) system, as well as the

internal ORNL pipeline, can annotate a new genome in 12-24 hours (Aziz, et al., 2008),

whereas the DOE/JGI annotation pipeline relies on submissions to the Integrated

Microbial Genomes (IMG) system (Markowitz, et al., 2006; Markowitz, et al., 2010),

which are only processed every 2-3 weeks (Mavromatis, et al., 2009). Furthermore, none

of these systems is designed to handle the dataflow from a project, which at full capacity

will need annotations for veritable hundreds of genomes every week. On the other hand,

since such a project will focus on strains of known species, existing annotations from

such pipelines could be used in annotating new strains due to the small phylogenetic

distance between them.

Solutions

The focus of this thesis, then, is a solution to this problem. The approach is based

on the concept of pan-genomes, the collection of all genes/proteins at a given phyla level

(species, subspecies, etc.). Such a collection must be built from a given set of

representative genomes, accounting for orthologs and paralogs, as well as proteins unique

to a single strain. Once such a set of proteins is amassed, they can be submitted for

www.manaraa.com

3

annotation to an existing pipeline, a process which would need occur only once.

Subsequently, this database of proteins can be rapidly searched with a newly-sequenced

genome using the recently-recognized (Aziz, et al., 2008) method of k-mer peptide

matching, which avoids the need for time-consuming alignments, instead counting the

number of identical peptides of length k between database sequences and query

sequences (Berendzen, et al., 2012). All that is needed after this is to apply annotation

information to the query proteins from their respective matches in the database.

www.manaraa.com

4

Chapter 2

Literature Review

In annotating any newly-sequenced prokaryotic genome, there are two primary

steps which must be completed. First, the coding sequences for proteins and the various

RNA molecules must be identified. Although prokaryotic genomes range from 140

kilobases (kb) to 17 megabases (Mb), most fall in the 3-5 Mb range (Land, Details of a

survey of sequenced bacterial genomes, 2014) and as such, identification must

necessarily be accomplished in silico. This has been the focus of a great deal of research

and several algorithms have been produced to address this problem. The second step of

genome annotation is the process of determining what the newly-identified sequences

actually do. While methods exist for identifying prominent RNA-encoding genes, such as

tRNAs and rRNAs, in relatively short order, protein-coding genes are a different matter.

To date, the process by which this process has been accomplished is to search the

putative products of such genes against a series of curated databases, looking for

similarities between these products and previously-characterized sequences. However,

such searches frequently rely on time- and computationally-expensive processes such as

sequence alignments and hidden Markov model searches in batch runs with other

submissions. A prospective solution to this problem has been found in the area of k-mer

peptide searches, which run rapidly and would allow for a single database (the pan-

genome) to be given a consensus annotation from numerous sources a single time, then

searched with a new set of sequences any number of times.

www.manaraa.com

5

Genome Annotation: Genes and Functions

Gene prediction. The advent of complete genome sequencing, and particularly

sequencing en masse with the advent of high-throughput technologies, has necessitated

the development of tools to identify the coding regions of a novel genome. Early methods

for this process coalesced as early as 1986 with the work of Mark Borodovsky in Markov

chain models, culminating in his group’s Genmark software (Borodovsky & McIninch,

1993), having since been updated to Genemark.hmm, which uses hidden Markov models

(Lukashin & Borodovsky, 1998). Drawing on this work but instead using interpolated

Markov models, the most commonly-used software for prokaryotic gene prediction,

GLIMMER, was subsequently developed by the Salzberg research group (Salzberg,

Delcher, Kasif, & White, 1998; Delcher, Bratke, Powers, & Salzberg, 2007).

 However, while both Genmark and especially GLIMMER remain widely-used,

their accuracies are sensitive to the %GC content the input genome, particularly above

60% (McHardy, Goesmann, Pühler, & Meyer, 2004). As %GC content increases, the

thymines and adenines needed for standard stop codons (TAG, TAA, and TGA) become

increasingly rare, resulting in a larger number of long, non-coding open reading frames

(ORFs) which GLIMMER and Genmark/Genemark.hmm are prone to incorrectly

labeling as genes. In contrast, the more recently-developed PRODIGAL—which self

trains on each genome, and uses a dynamic programming algorithm to call genes based

primarily on hexamer (di-codon) frequency and ribosome binding site (RBS) strength and

location relative to the start codon—is significantly less vulnerable to extremes in %GC

content and is also reliably more accurate with regards to start calls (Hyatt, et al., 2010).

www.manaraa.com

6

Because of these advantages, combined with the great speed with which PRODIGAL

runs (generally 1-2 minutes per genome), this was used to identify genes for this project.

(This was also done for the sake of consistency, since these strains were previously

annotated using many different methods; as such, some genes and proteins used in this

work differ from those found for these strains GenBank.)

Function prediction. The process of identifying the function of protein-coding

genes depends on the principle that homology (similarity of sequence due to a common

ancestry) implies similarity of function. While there are certain acknowledged issues with

this principle (Galperin & Koonin, 2012), it does largely hold up within the well-studied

phyla of prokaryotes, where there has been a great deal of experimental verification

(Koonin & Galperin, 2003). The application of this principle has primarily taken the form

of searchable repositories of functional information gained from experimental data. Some

of these are general-purpose databases, such as KEGG (Ogata, Goto, Fujibuchi, &

Kanehisa, 1998), COG (Tatusov, Koonin, & Lipman, 1997; Kristensen, et al., 2010), the

multi-database system of InterPro (Apweiler, et al., 2001; Hunter, et al., 2012) and the

NCBI’s GenBank and protein domain database combined with the BLAST algorithm

(Altschul, Gish, Miller, Myers, & Lipman, 1990; Benson, et al., 2014). Others, such as

Pfam (Sonnhammer, Eddy, & Durbin, 1997; Finn, et al., 2014) act as domain-

identification tools, or serve to identify specific types of proteins, such as enzymes in the

case of PRIAM (Claudel-Renard, Chevalet, Faraut, & Kahn, 2003).

 While all of these databases provide functional information for a set of query gene

products, the desire to achieve a comprehensive understanding of a given genome, as

www.manaraa.com

7

well as to avoid bias, has led to the development of annotation pipelines. These pipelines

take advantage of these and other databases using large-scale searches to align individual

domains and whole proteins to database sequences and predict respective functions by

homology. While there are numerous such pipelines, the details of three notable pipelines

are outlined in Table 1 (note that all tables and figures are found in the appendices): the

Rapid Annotations using Subsystems Technology (RAST) pipeline; the Department of

Energy/Joint Genome Institute pipeline; and the internal pipeline used at Oak Ridge

National Labority, developed from the DOE/JGI pipeline.

Pan-genomes

 A pan-genome, as the name would suggest, is a “genome” which represents all

genes, both shared and unique, within a given taxonomic group, generally the species

(Medini, Donati, Tettelin, Masignani, & Rappuoli, 2005). Building a pan-genome thus

requires that the shared genes, or protein families, be identified and included. This

process can be thought of as a “layering” of genes onto a conceptual genomic ‘scaffold’

(see Figure 1). Furthermore, in taxa with numerous (>75) members, going through the

process of building an initial pan-genome using all members is not practical due to large

computational costs, and a representative subset must be chosen instead; in this instance,

it is important to ensure that this subset represents the full phylogenetic breadth of the

taxon in question.

Average Nucleotide Identity (ANI) and phylogenetic breadth. As mentioned

previously, it is necessary to represent the phylogenetic diversity of the taxon for which

the pan-genome is being constructed. Thus, in a species containing numerous strains, it

www.manaraa.com

8

becomes necessary to select a sufficiently-diverse set of these strains such that the

resulting pan-genome is adequately representative of the species.

 Numerous methods have been used in the past to determine this phylogenetic

diversity in prokaryotes. The advent of first-generation sequencing technology allowed

comparison of conserved sequences like the 16s rRNA gene, or a conventional set of

“core” proteins in the genome. More recently, however, the arrival of next-generation

sequencers combined with ever-increasing computational power has allowed

phylogenetics to be conducted on the genomic scale (Zhi, Zhao, Li, & Zhao, 2012).

Though not without its own challenges, this approach overcomes the low resolving power

of the relatively conserved 16s rRNA gene and the confounding myriad of potential

issues brought on by lateral gene transfer in a small set of protein-coding genes (Sentausa

& Fournier, 2013).

 To take advantage of these developments in determining the phylogenetic

diversity of the chosen strains, this project will establish the average nucleotide identity

(ANI) of each strain relative to every other strain. There are several methods by which to

accomplish this task, but the most efficient and straightforward is to produce alignments

of uniform genome fragments from the different strains and calculate the ANI, which in

reality is merely a percent similarity, based on the best of these alignments. The JSpecies

software (Richter & Rossello-Mora, 2009) incorporates three separate algorithms for this

purpose (BLAST, MUMer, and Tetra), which can be used together or separately and run

in parallel. JSpecies creates a reciprocal similarity matrix from each algorithm which,

with minor modifications, can be quickly imported to the APE phylogenetics package for

www.manaraa.com

9

R (Paradis, Claude, & Strimmer, 2004). These matrices can then be used to build

phylogenetic trees using several different algorithms, such as neighbor-joining (NJ),

which in turn can be visualized and further manipulated in the Molecular Evolutionary

Genetics Analysis (MEGA) package (Tamura, Stecher, Peterson, Filipski, & Kumar,

2013).

Protein families: orthologs vs. paralogs. Once a representative set of strains has

been chosen, it is necessary to identify from amongst this set, those genes which are

equivalent from one genome to another. This requires distinguishing between orthologs,

which are the true inter-genome equivalents, and paralogs, which represent intra-genome

duplication events in ancestor species which, relatively unconstrained by evolutionary

forces, frequently differ in function (Altenhoff & Dessimoz, 2012). This in turn presents

unique challenges due to the large number and close relation of the considered strains.

There are two primary computational approaches to solving this problem: tree

reconciliation methods such as RIO (Zmasek & Eddy, 2002) and OrthoStrapper (Storm &

Sonnhammer, 2002), or graph-based methods such as COG (Tatusov, Koonin, & Lipman,

1997) and OrthoMCL (Li, Stoeckert, & Roos, 2003). Although primarily designed for

analysis amoung eurkaroytes, OrthoMCL’s unique Markov clustering algorithm (van

Dongen, 2000) combined with its parallelized nature makes it well-suited to the this

project and is thus the method by which protein families will be determined for the pan-

genome.

www.manaraa.com

10

Salmonella enterica: A Test-bed

 It was necessary to choose a taxon in which to test the pan-genome building as

well as function-prediction algorithms, which were the focus of this thesis. There were

two overriding justifications for selecting Salmonella enterica, a gram-negative, rod-

shaped species which annually causes millions of cases of typhoid fever (Crump &

Mintz, 2010) and non-typhoid infection (Chen, Wang, Su, & Chiu, 2013) such as poultry-

borne food poisoning (Cox, Cason, & Richardson, 2011); first, the deliverables of this

thesis are primarily targeted to large sequencing projects such as Dr. Bart Weimer’s

“100,000 genomes” project, which is focused on food-borne pathogens such as S.

enterica. Secondly, the pan-genome of S. enterica has already been investigated

previously (Jacobsen, Hendriksen, Aaresturp, Ussery, & Friis, 2011), which will allow

for validation of the pan-genome building algorithm.

Classification and Identification via k-mer Matching

 As mentioned previously, the rate-limiting step in prokaryotic genome annotation

is functional prediction of protein-coding genes. While some pipelines’ reliance on batch

runs of numerous genomes every few days or weeks is a contributing factor, the primary

delay is caused by querying one or more databases with each gene. This is because

database queries necessitate creating alignments or performing Hidden Markov Model

searches between query and database sequences; while such processes may need only a

30 seconds or a minute per gene, this becomes time-consuming even for the fastest

algorithms when faced with the need to identify several thousand genes per genome and,

for projects such as Dr. Weimer’s, hundreds or thousands of genomes at a time. Recently,

www.manaraa.com

11

however, it has been recognized that sequence similarity can be determined more rapidly

by avoiding alignments completely and instead matching peptides, or substrings, of

length k between query and subject sequences, be they whole genomes (Larsen, et al.,

2014) or individual genes and proteins. Percent similarity between two sequences is

calculated by counting the number of Boolean matches and normalizing for the total

length of the sequence. This has already been implemented for numerous purposes,

including phylogenetics, alignment algorithms such as BLAST (Altschul, Gish, Miller,

Myers, & Lipman, 1990), and metagenomics studies (Edwards, et al., 2012). Even more

relevantly, the developers of the RAST pipeline have recently updated their methodology

to include a k-mer matching step (Overbeek, et al., 2014).

 However, unlike with the BLAST algorithm, in determining sequence relatedness

by k-mer matching alone, k is not defined dynamically but is instead set by the user.

Several groups have made the case for different values of k, but the developers of the

Sequedex k-mer metagenomics tool have demonstrated that k=10 is the most sensible

value (Berendzen, et al., 2012) for peptides, balancing sensitivity with exclusivity.

Nevertheless, although Sequedex can process an entire genome in mere minutes, its

current implementation focuses on functional and phylogenetic categorization of

metagenomic data, making it poorly-suited both to detailed functional predictions in an

assembled genome, as well as to integration into a larger pipeline. Therefore, the work in

this thesis uses the Simrank algorithm (DeSantis, et al., 2011) for the ultimate purpose of

matching query protein sequences to their corresponding sequences in the pan-genome.

The Simrank algorithm is implemented as a Perl module, where it is first used to create a

www.manaraa.com

12

binary database file of k-mer peptides of user-specified length from the initial collection

of pan-genome protein sequences. Simrank then takes each query sequence and calculates

matches by dividing the total number of matched peptides by the total length of the

shorter of the two sequences. In all, once the binary file is in place, the runtime for

Simrank on an average-sized S. enterica genome is measured not in minutes, but in

seconds.

www.manaraa.com

13

Chapter 3

Materials and Methods

Building the Pan-genome of Salmonella enterica subsp. enterica

Determining phylogenetic breadth of representative strains. In order to

ensure that the pan-genome database sufficiently represented the phylogenetic diversity

of S. enterica, the first step in building such a database was to build a phylogenetic tree

with the prospective strains and compare it to existing phylogenies of S. enterica. For the

reasons explained previously, the Average Nucleotide Identity (ANI) of the chosen

strains relative to each other was used to create the distance matrix from which this tree

was built. Using JSpecies v1.2.1, the complete genome sequence of each strain was first

broken into non-overlapping fragments of 1020 nucleotides, and a reciprocal BLAST

search of each fragment against every other fragment was run in parallel on 16 processors

on the Asp cluster at ORNL. This process takes approximately 8-9 hours, and the

resulting output is a matrix of the percent identities of each strain to every other strain.

 This output forms the basis for a distance matrix. However, because this is a

reciprocal search, there are two percentages for each pair of strains (that is to say, ‘Strain

1’ has a certain percent identity to ‘Strain 2’ but ‘Strain 2’ can possess a different percent

identity to ‘Strain 1’); this is inherent in the BLAST alignment process, as the resulting

score is dependent on which sequence is considered the subject and which is considered

the query. Nevertheless, there is a direct correlation between the proportional difference

in sequence length and the difference in calculated similarity, meaning that significant

discrepancies between corresponding scores generally arise only in the case of a

www.manaraa.com

14

significant proportional difference in sequence length (which results in differing query

coverage). In a species such as S. enterica, large differences in genome length do not

exist and as such, each pair of corresponding scores was considered close enough in

value (±1.5%) that merely averaging the two numbers to produce a single triangular

matrix was determined to be acceptable. Subsequently, this was transformed into a true

distance matrix by subtracting each of these percentages from 100, thus converting each

number from a percent similarity to a percent difference, or distance.

 Finally, the actual tree-building step was performed with the Ape phylogenetics

package for R, using the neighbor-joining algorithm and writing to file using Netwick

format. The tree was subsequently visualized using MEGA, which was also used to set

the out-group, S. enterica subsp. arizonae, as the root for the tree.

Determining protein families using OrthoMCL. Once a sufficiently broad

phylogenetic range of strains had been chosen (for a complete list, see Table 2), the next

step was to identify the protein families present in these strains. Therefore, in order to

provide consistency and increased accuracy, all protein sequences were identified from

the genome sequences using Prodigal and concatenated into a single list, which produced

a total of 137,718 protein sequences. This file was subsequently used as the input for

OrthoMCL, with the initial all-vs.-all BLAST search being run on 36 processors. In all,

the OrthoMCL run took approximately 18 hours.

 While OrthoMCL is both fast (considering the input size) and reliable, it is not

perfect; approximately 5% of output clusters either represent multiple protein families

grouped into a “super-cluster” or simply include one or more proteins which do not

www.manaraa.com

15

belong. To correct for this, a file was created which displayed the BLAST bit scores,

normalized to the sequence length, for each pair of proteins in a prospective cluster from

OrthoMCL as a series of matrices. Using this file, the two scores for any two pairs of

proteins were then averaged (as with the tree-building process mentioned previously),

and if this average score was equal to or greater than the weighted average score of the

cluster, the two proteins were considered a match. By iterating through each gene in a

given prospective cluster and applying this threshold, an initial list of protein families

was generated.

Building consensus sequences with Muscle and most-common residues. The

next step in building a pan-genome database is to determine the consensus sequence for

each protein family. To this end, the sequences for all proteins in a newly-determined

cluster were placed in a file, one file per cluster. The alignment for each cluster was then

created using the Muscle algorithm (Edgar, 2004), distributed using a Python wrapper

script provided by JJ Chai at ORNL. This script used the standard number of iterations

for each alignment and output the resulting alignments in ClustalW format. In all, this

process completed in approximately 20 minutes when run on 6 CPUs.

Next, these alignments were concatenated into a single file and each alignment

processed to produce a single consensus sequence for the protein family, by iterating

through each position in the alignment. Whenever a given position was universally

conserved, the corresponding residue was added to the end of the consensus sequence; in

cases where a given position lacked universal consensus in the alignment, the most

common residue at that position was determined and added to the consensus sequence; in

www.manaraa.com

16

the case where a gap was the most common at a given non-conserved position, nothing

was added to the consensus sequence. All protein family consensus sequences were

ultimately printed to a FASTA-formatted file, and this process took approximately 30-45

seconds in total.

Eliminating redundant sequences and annotating the database. A checkpoint

step in building the pan-genome as a searchable database is to ensure that no sequence is

represented in the database more than once; this serves to eliminate unnecessary search

space, as well as to prevent any mis-annotations due to spurious matches to query

proteins. To accomplish this, the initial database was sorted from longest sequence to

shortest, then split into five smaller files. Each file was used as the input to a Perl script,

which used the Simrank Perl module to incrementally build and re-format a new database

file. The first sequence was added to a blank database file, then the next-largest sequence

was searched against this file using the Simrank matching algorithm; if the query protein

matched below 50% similarity, it was added to the database file and this file was then re-

formatted into the necessary binary file. This process was repeated for each protein in the

subset until a database of unique sequences had been created. This process was conducted

in parallel for all five database-subsets. Then, database 2 was searched against database 1,

and all proteins matching below 50% similarity were added to database 1, and this was

repeated in series for databases 3-5 until a complete database of protein families was

created. In all, this process ran in approximately 3 hours (the serial version of this process

was also tested, but took over 3 days to complete). This entire process was then repeated

for the list of proteins, which appear in the genome of only one representative strain.

www.manaraa.com

17

Once a database of unique “single-occurrence” genes was created, it was concatenated

with the database of unique protein families.

 Finally, this complete set of proteins was annotated using the existing ORNL

bacterial annotation pipeline.

Searching the Pan-genome with Query Protein Sequences Using K-mer Peptides

Identifying protein-coding, tRNA, and rRNA genes in novel query genomes.

A new genome to be annotated was first input to Prodigal (Hyatt, et al., 2010) to produce

a list of protein-coding gene coordinates in the genome. The sequences from these

coordinates were then translated to protein sequences and collected into a single FASTA-

formatted file. tRNA and rRNA sequences were identified using tRNAScan (Fichant &

Burks, 1991) and RNAmmer (Lagesen, et al., 2007), respectively.

Using Simrank to match query proteins to database sequences. In order to

implement rapid protein matching between those in a novel genome and those in the

annotated database, a k-mer search was implemented using the Simrank module for Perl.

The database file was imported and formatted to a binary file of the same name, using

k=10 and minimum length of 10. Next, the FASTA-formatted file of proteins from the

query genome was used as the argument to the Simrank search function, with the

function set to return only top match above a certain minimum threshold. This threshold

was determined dynamically for each genome by minimizing the number of false

positives (i.e., the number of secondary matches above the threshold being tested) and the

‘false negative’ rate (i.e., the percent of the total proteins not matched in the database at

the threshold being tested) with respect to each other. This process is graphically

www.manaraa.com

18

represented in Figure 2. The annotation for this matching protein was then copied to the

output file of the pipeline.

Identifying and annotating novel proteins in query genomes. To identify novel

proteins in the query genome, the protein-matching Perl script iterated through each

query protein’s entry in data structure returned by the Simrank search function. If a given

protein did not match to any entry in the database at or above the threshold, its entry in

this data structure was blank, and its locus tag and sequence were then added to a new

data structure, and subsequently all un-matched proteins were printed to a separated

FASTA-formatted file. This file was then used as input to the existing ORNL annotation

pipeline. This annotation was then added to the output for the query genome.

Testing R-FAP against existing pipelines: speed and accuracy. Once the new

annotation pipeline was in place, it was necessary to demonstrate it as a marked

improvement over existing tools in the field. Since the original inspiration for the

development of the tool, as well as one of its primary intended uses, has been the large-

scale sequencing projects such as that at UC-Davis, a test of the tool’s speed was

conducted by running it on a total protein FASTA files from one hundred S. enterica

strains. This served not only to determine a statistically-significant mean for run-time on

a single genome, but also to test its ability to handle large number of genomes at a time.

 To test the consistency and accuracy of the tool, it was run on the total protein

sequences from a separately-annotated strain with a static threshold of 5% similarity. S.

enterica genome. S. Cubana str. CFSAN002050 was annotated using both the internal

ORNL pipeline and the R-FAP tool, and the resulting annotations for each protein were

www.manaraa.com

19

then compared. The accuracy was then calculated as the percentage of proteins which

showed consistency between the two sets of annotation.

www.manaraa.com

20

Chapter 4

Results, Discussion, and Recommendations

The Pan-genome Assembly Process

The workflow of the pan-genome assembly tool is outlined in Figure 3. In short,

ANI for the 31 S. enterica strains was determined using Jspecies, which took

approximately 6 hours to run. From this process, the BioNJ tree-building algorithm was

used to produce the tree found in Figure 4, which shows that although most included

strains represent minimal phylogenetic diversity, the inclusion of S. enterica subsp.

arizonae increases the phylogenetic breadth to nearly 6%, comparable to existing trees

for the species (National Center for Biotechnology Information, 2014).

Using OrthoMCL to determine protein families took approximately 18 hours and

produced a total of 7,330 initial protein clusters. Post-processing of these clusters using

assemble_clusters.pl took less than two hours and resulted in a total of 9,028 clusters in

all. The sequences of these clusters were then aligned using Muscle, which in parallelized

form ran in approximately 25 minutes, and get_consensus.pl was then used to build a

consensus sequence from each of these alignments. Finally, using the Simrank algorithm

to remove redundant sequences, a final list of protein families was generated, totaling

8,031 non-unique protein families (meaning, families found in two or more genomes) and

3,395 “single-occurrence” families (meaning those proteins found in only one genome),

for a total of 11,426 sequences in all.

www.manaraa.com

21

R-FAP as a Tool for Function Calling and Annotation

 The final workflow for protein function prediction is laid out in Figure 5. Briefly,

the newly-predicted proteins in a novel strain of S. enterica are input to the Simrank

algorithm, which splits them into 10-mer peptides and searches them against the

annotated pan-genome database. Each protein which matches a database protein above

the selected threshold is then given the annotation of that match. Each protein for which

no match is found in the database must be annotated separately; it is intended that this

will be done using the internal ORNL pipeline, which will produce annotations for the

few unmatched proteins in short order. These annotations will then be output along with

those found using R-FAP.

 In terms of speed, R-FAP processed 100 S. enterica genomes using a dynamic

threshold in 4 hours, 33 minutes, 39 seconds, for an average of 2 minutes and 44 seconds

per genome. This version settled on a threshold of 70 or 75% in all cases. For

comparison, a static-threshold (50% similarity) version of R-FAP was run on the same set

of genomes and ran in just under 53 minutes, for an average of 31.8 seconds per genome.

This speed-up, combined with few genes missed, was found to be preferable to a dynamic

threshold (the discussion below explains why minimizing “false positive” secondary

matches is of negligible significance to minimizing the number of genes missed)

 Regarding accuracy, R-FAP matched 4,468 proteins out of 4,674 to the pan-

genome database at 5% similarity or above. Of these, 4,166 (93.5%) were given the exact

same annotation by both tools. However, while the annotations for the pan-genome

database in their current form are “single-entry” (meaning one piece of annotation per

www.manaraa.com

22

protein family), those from a full genome annotated by the ORNL pipeline receive

information for each queried database; deeper analysis and comparison of this

information revealed of the 6.5% (292 proteins) which initially appeared inconsistent,

3.9% (173 proteins) were actually correct and 2.6% (118 proteins) were mis-annotated

due to their corresponding database sequences having been inconsistently labeled during

the post-processing step which followed their original annotation. Ultimately, this

analysis showed that only a single protein (representing just 0.02% of the 4,674 proteins)

was incorrectly annotated by the R-FAP tool.

Discussion and Recommendations

 Thresholds and accuracy. The process of determining the minimum match

threshold in real-time was implemented for two primary reasons; first, to eliminate ‘false

positive’ secondary matches from the Simrank algorithm; secondly, to ensure accurate

annotations for all allowed matches. However, avoiding these so-called ‘false positives’

have little bearing on the function of R-FAP, as the top match is the only match

considered regardless of whether there is a secondary match. Furthermore, testing

demonstrated that the primary matches were accurate 99.8% of the time all the way down

to 5% similarity, and 100% of the time above 30% similarity. Since such a threshold

results in an average of <5% of the total proteins being missed by R-FAP (which would

then have to be annotated using the existing ORNL pipeline), the process of dynamically

setting the match threshold for each new genome does not appear to be worth the time

expenditure, and will likely be abandoned in the future.

www.manaraa.com

23

Implications. The issues which confounded testing of accuracy, such as prima

facie differences in annotation that further analysis showed to be the same, highlight the

importance of the annotations applied to pan-genome sequences. Thus, future work will

likely involve manual curation of the database and the annotations which it contains to

ensure the best possible accuracy. On the other hand, it is also possible that the

search/matching algorithm itself might be improved. Currently, Simrank calculates the

similarity between two sequences by counting the number of matching k-mers and

dividing by the length of the shorter of the two sequences. This means that a sequence

which represents only a single domain could match at a very high percent to a much

larger sequence which happens to contain said domain; this could also cause problems in

cases where pseudo-genes have been called as real genes. The single incorrectly-

annotated sequence is a prime example of both of these possibilities. R-FAP labeled it a

2'-5' RNA ligase, but a BLAST search of the sequence indicated that it only covered

~46% of 2'-5' RNA ligase and is likely a pseudo-gene; nevertheless, because the percent

similarity was calculated based on the query sequence rather than the database sequence,

it matched at 28% similarity. It is possible, therefore, that in the future it might be better

to use the longer of the two sequences, or perhaps to simply use the length of the

database sequence in all cases.

Nonetheless, the primary impact of this work is as a proof-of-concept for the use

of a pan-genome based k-mer matching approach to functional prediction in genome

annotation. In point of fact, the RAST pipeline is perhaps the biggest prospective

competitor to R-FAP due to its recently update to take advantage of k-mer peptide

www.manaraa.com

24

matching, in place of alignments, to its FIGfam database (Overbeek, et al., 2014).

However, RAST’s use of Glimmer to predict genes requires several iterations to achieve

any level of accuracy and, combined with the massive search space inherent in the

FIGfam database, this puts R-FAP at a distinct advantage. Indeed, whereas a pipeline

such as that at ORNL spends approximately 90% of its 6-12 hours (~100 CPU hours) of

runtime on functional prediction (Land, Details of the ORNL Microbial Annotation

Pipeline, 2014), k-mer matching to a pan-genome database of proteins allows R-FAP to

do the same process in seconds to minutes. In a hypothetical pipeline, therefore, 90% of

the original CPU time would now be reduced by a factor of the genes annotated by R-

FAP as a proportion of the total number of genes. Put another way, if R-FAP identified

95% of the total number of protein-coding genes in a genome, only 5% would need to be

annotated using the traditional database search method. Thus, the CPU time would be

reduced from ~100 hours to ~14.5 (~10 hours [gene prediction] + ~30 sec. [95% of

functional prediction] + 4.5 hours [remaining 5%]). Thus, if 100 CPU hours represent ~8

hours of runtime, runtime would be reduced to just over an hour. This alone represents a

major advancement, but even more significant is the reduction in sheer computing power

required to accomplish the task of annotation.

Implementation. Two primary possibilities for implementation of R-FAP present

themselves readily. The first, already discussed, is the large sequencing project, such as

Dr. Weimer’s, which seeks to study pathogens and other organisms on a vast scale to

gain insight into their phylogenetic and functional variability. Such projects will require

www.manaraa.com

25

high-throughput annotation mechanisms in order to keep pace and allow researchers to

interpret data in any semblance of real-time.

The second possible implementation of a pipeline which uses R-FAP for protein

function prediction is a rapid diagnostic tool for medical applications. As an increasing

number of hospitals and clinics acquire next-generation sequencing technology to use in

the real-time identification of pathogens, there will be an increasing need for rapid

annotation of the output of these sequencers. A set of pan-genome databases for the most

common human pathogenic species, combined with a pipeline based on R-FAP, would

allow healthcare professionals to quickly identify not only a pathogen, but also the

specific treatments to which it is resistant or susceptible. This in turn would allow the

ability to make treatment decisions in a matter of hours rather than days, and could

potentially save countless lives.

www.manaraa.com

26

List of References

www.manaraa.com

27

Altenhoff, A. M., & Dessimoz, C. (2012). Inferring Orthology and Paralogy. In M.

Anisimova (Ed.), Evolutionary Genomics: Statistical and Computational Methods

(Vol. 1, pp. 259-279). Humana Press. doi:10.1007/978-1-61779-582-4_9

Altschul, S. F., Gish, W. R., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Basic

local alignment search tool. Journal of Molecular Biology, 215(3), 403-410.

Apweiler, R., Attwood, T. K., Bairoch, A., Bateman, A., Birney, E., Biswas, M., . . .

Zdobnov, E. M. (2001). The InterPro database, an integrated documentation

resource for protein families, domains and functional sites. Nucleic Acids

Research, 29(1), 37–40.

Aziz, R. K., Bartels, D., Best, A. A., DeJongh, M., Disz, T., Edwards, R. A., . . . McNeil,

L. K. (2008). The RAST Server: Rapid Annotations using Subsystems

Technology. BMC Genomics, 9(75).

Benson, D. A., Clark, K., Karsch-Mizrachi, I., Lipman, D. J., Ostell, J., & Sayers, E. W.

(2014). GenBank. Nucleic Acids Research, 42(Database issue), D32–D37.

doi:10.1093/nar/gkt1030

Berendzen, J., Bruno, W. J., Cohn, J. D., Hengartner, N. W., Kuske, C. R., McMahon, B.

H., . . . Xie, G. (2012). Rapid phylogenetic and functional classification of short

genomic fragments with signature peptides. BMC Research Notes, 5(460).

Borodovsky, M., & McIninch, J. (1993). Genmark: Parallel gene recognition for both

DNA strands. Computers & Chemistry, 17(2), 123-133.

Budowle, B., Murch, R., & Chakrabort, R. (2005). Microbial forensics: the next forensic

challenge. International Journal of Legal Medicine, 119(6), 317–30.

www.manaraa.com

28

Chen, H. M., Wang, Y., Su, L. H., & Chiu, C. H. (2013). Nontyphoid Salmonella

Infection: Microbiology, Clinical Features, and Antimicrobial Therapy. Pediatrics

& Neonatology, 54(3), 147-152.

Claudel-Renard, C., Chevalet, C., Faraut, T., & Kahn, D. (2003). Enzyme-specific

profiles for genome annotation: PRIAM. Nucleic Acids Research, 31(22), 6633-

6639.

Cox, N., Cason, J., & Richardson, L. (2011). Minimization of Salmonella Contamination

on Raw Poultry. Annual Review of Food Science and Technology, 2, 75-95.

Crump, J. A., & Mintz, E. D. (2010). Global trends in typhoid and paratyphoid fever.

Clinical Infectious Diseases, 50(2), 241–246.

Delcher, A. L., Bratke, K. A., Powers, E. C., & Salzberg, S. L. (2007). Identifying

bacterial genes and endosymbiont DNA with Glimmer. Bioinformatics, 23(6),

673–679. doi:10.1093/bioinformatics/btm009

DeSantis, T. Z., Keller, K., Karaoz, U., Alekseyenko, A. V., Singh, N. N., Brodie, E. L., .

. . Larsen, N. (2011). Simrank: Rapid and sensitive general-purpose k-mer search

tool. BMC Ecology, 11(1), 1-8. doi:10.1186/1472-6785-11-11

Edgar, R. C. (2004). MUSCLE: multiple sequence alignment with high accuracy and

high throughput. Nucleic Acids Research, 32(5), 1792-1797.

Edwards, R. A., Olson, R., Disz, T., Pusch, G. D., Vonstein, V., Stevens, R., & Overbeek,

R. (2012). Real time metagenomics: using k-mers to annotate metagenomes.

Bioinformatics, 28(24), 3316–3317.

www.manaraa.com

29

Fichant, G. A., & Burks, C. (1991). Identifying potential tRNA genes in genomic DNA

sequences. Journal of Molecular Biology, 220(3), 659–671.

Finn, R. D., Bateman, A., Clements, J., Coggill, P., Eberhardt, R. Y., Eddy, S. R., . . .

Punta, M. (2014). Pfam: the protein families database. Nucleic Acids Research,

42(Database issue), D222–D230. doi:10.1093/nar/gkt1223

Galperin, M. Y., & Koonin, E. V. (2012). Divergence and Convergence in Enzyme

Evolution. Journal of Biological Chemistry, 287(1), 21-28.

Goldstein, E., Kirkcaldy, R. D., Reshef, D., Berman, S., Weinstock, H., Sabeti, P., . . .

Lipsitch, M. (2012). Factors Related to Increasing Prevalence of Resistance to

Ciprofloxacin and Other Antimicrobial Drugs in Neisseria gonorrhoeae.

Emerging Infectious Diseases, 18(8), 1290-1297.

Hunter, S., Jones, P., Mitchell, A., Apweiler, R., Attwood, T. K., Bateman, A., . . . Yong,

S.-Y. (2012). InterPro in 2011: new developments in the family and domain

prediction database. Nucleic Acids Research, 40(Database issue), D306–D312.

Hyatt, D., Chen, G.-L., LoCascio, P. F., Land, M. L., Larimer, F. W., & Hauser, L. J.

(2010). Prodigal: prokaryotic gene recognition and translation initiation site

identification. BMC Bioinformatics, 11, 119-130.

Jacobsen, A., Hendriksen, R. S., Aaresturp, F. M., Ussery, D. W., & Friis, C. (2011). The

Salmonella enterica Pan-genome. Microbial Ecology, 62(3), 487–504.

Koonin, E. V., & Galperin, M. Y. (2003). Genome Annotation and Analysis. In E. V.

Koonin, & M. Y. Galperin, Sequence - Evolution - Function: Computational

www.manaraa.com

30

Approaches in Comparative Genomics (pp. 193-226). Boston: Kluwer Academic.

Retrieved from http://www.ncbi.nlm.nih.gov/books/NBK20253/

Kristensen, D. M., Kannan, L., Coleman, M. K., Wolf, Y. I., Sorokin, A., Koonin, E. V.,

& Mushegian, A. (2010). A low-polynomial algorithm for assembling clusters of

orthologous groups from intergenomic symmetric best matches. Bioinformatics,

26(12), 1481–1487.

Lagesen, K., Hallin, P., Rødland, E. A., Stærfeldt, H.-H., Rognes, T., & Ussery, D. W.

(2007). RNAmmer: consistent and rapid annotation of ribosomal RNA genes.

Nucleic Acids Research, 35(9), 3100–3108.

Land, M. (2014, March 28). Details of a survey of sequenced bacterial genomes. (J. M.

Utley, Interviewer)

Land, M. (2014, March 31). Details of the ORNL Microbial Annotation Pipeline. (J. M.

Utley, Interviewer)

Larsen, M. V., Cosentino, S., Lukjancenko, O., Saputra, D., Rasmussen, S., Hasman, H., .

. . Lund, O. (2014). Benchmarking of Methods for Genomic Taxonomy. Journal

of Clinical Microbiology, Publshed online ahead of print.

doi:10.1128/JCM.02981-13

Lee, N., Hui, D., Wu, A., Chan, P., Cameron, P., Joynt, G. M., . . . Sung, J. J. (2003). A

Major Outbreak of Severe Acute Respiratory Syndrome in Hong Kong. The New

England Journal of Medicine, 20(348), 1986-94.

Li, L., Stoeckert, C. J., & Roos, D. S. (2003). OrthoMCL: Identification of Ortholog

Groups for Eukaryotic Genomes. Genome Research, 13, 2178-2189.

www.manaraa.com

31

Loman, N. J., Constantinidou, C., Chan, J. Z., Halachev, M., Sergeant, M., Penn, C. W., .

. . Pallen, M. J. (2012). High-throughput bacterial genome sequencing: an

embarrassment of choice, a world of opportunity. Nature Reviews Microbiology,

10, 599-606.

Lukashin, A. V., & Borodovsky, M. (1998). GeneMark.hmm: new solutions for gene

finding. Nucleic Acids Research, 26(4), 1107–1115.

Markowitz, V. M., Chen, I.-M. A., Palaniappan, K., Chu, K., Szeto, E., Grechkin, Y., . . .

Kyrpides, N. C. (2010). The integrated microbial genomes system: an expanding

comparative analysis resource. Nucleic Acids Research, 38, D382–D390.

Markowitz, V. M., Korzeniewski, F., Palaniappan, K., Szeto, E., Werner, G., Padki, A., .

. . Kyrpides, N. C. (2006). The integrated microbial genomes (IMG) system.

Nucleic Acids Research, 34, D344–D348.

Marra, M. A., Jones, S. J., Astell, C. R., Holt, R. A., Brooks-Wilson, A., Butterfield, Y.

S., . . . Roper, R. L. (2003). The Genome Sequence of the SARS-Associated

Coronavirus. Science, 300(5624), 1399-1404.

Mavromatis, K., Ivanova, N. N., Chen, I.-M. A., Szeto, E., Markowitz, V. M., &

Kyrpides, N. C. (2009). The DOE-JGI Standard Operating Procedure for the

Annotations of Microbial Genomes. Standards in Genomic Science, 1, 63-67.

McHardy, A. C., Goesmann, A., Pühler, A., & Meyer, F. (2004). Development of joint

application strategies for two microbial gene finders. Bioinformatics, 20(10),

1622–1631.

www.manaraa.com

32

Medini, D., Donati, C., Tettelin, H., Masignani, V., & Rappuoli, R. (2005). The microbial

pan-genome. Current Opinion in Genetics & Development, 15, 589–594.

National Center for Biotechnology Information. (2014, March 27). Salmonella Enterica.

Retrieved from NCBI Genome:

http://www.ncbi.nlm.nih.gov/genome/?term=salmonella+enterica

Ogata, H., Goto, S., Fujibuchi, W., & Kanehisa, M. (1998). Computation with the KEGG

pathway database. Biosystems, 47(1-2), 119-128.

Ohnishi, M., Golparian, D., Shimuta, K., Saika, T., Hoshina, S., Iwasaku, K., . . . Unemo,

M. (2011). Is Neisseria gonorrhoeae Initiating a Future Era of Untreatable

Gonorrhea?: Detailed Characterization of the First Strain with High-Level

Resistance to Ceftriaxone. Antimicrobial Agents and Chemotherapy, 55(7), 3538–

3545.

Overbeek, R., Olson, R., Pusch, G. D., Olsen, G. J., Davis, J. J., Disz, T., . . . Stevens, R.

(2014). The SEED and the Rapid Annotation of microbial genomes using

Subsystems Technology (RAST). Nucleic Acids Research, 42(Database issue),

D206–D214. doi:10.1093/nar/gkt1226

Paradis, E., Claude, J., & Strimmer, K. (2004). APE: Analyses of Phylogenetics and

Evolution in R language. Bioinformatics, 20(2), 289–290.

Richter, M., & Rossello-Mora, R. (2009). Shifting the genomic gold standard for the

prokaryotic species definition. Proceedings of the National Academy of Sciences,

106(45), 19126-19131.

www.manaraa.com

33

Salzberg, S. L., Delcher, A. L., Kasif, S., & White, O. (1998). Microbial gene

identification using interpolated Markov models. Nucleic Acids Research, 26(2),

544–548.

Sentausa, E., & Fournier, P.-E. (2013). Advantages and limitations of genomics in

prokaryotic taxonomy. Clinical Microbiology and Infection, 19(9), 790–795.

Smith, G. J., Vijaykrishna, D., Bahl, J., Lycett, S. J., Worobey, M., Pybus, O. G., . . .

Rambaut, A. (2009). Origins and evolutionary genomics of the 2009 swine-origin

H1N1 influenza A epidemic. Nature, 459, 1122-1126.

Sonnhammer, E. L., Eddy, S. R., & Durbin, R. (1997). Pfam: A Comprehensive Database

of Protein Domain Families Based on SeedAlignments. Proteins: Structure,

Function, and Bioinformatics, 28(3), 405–420.

Storm, C. E., & Sonnhammer, E. L. (2002). Automated ortholog inference from

phylogenetic trees and calculation of orthology reliability. Bioinformatics, 18(1),

92–99.

Tamura, K., Stecher, G., Peterson, D., Filipski, A., & Kumar, S. (2013). MEGA6:

Molecular Evolutionary Genetics Analysis Version 6.0. Molecular Biology and

Evolution, 30(12), 2725–2729.

Tatusov, R. L., Koonin, E. V., & Lipman, D. J. (1997). A genomic perspective on protein

families. Science, 278(5338), 631-637.

The Writing Committee of the World Health Organization (WHO) Consultation on

Human Influenza A/H5. (2005). Avian Influenza A (H5N1) Infection in Humans.

The New England Journal of Medicine, 353, 1374-1385.

www.manaraa.com

34

van Dongen, S. M. (2000). Graph Clustering by Flow Simulation. (Unpublished doctoral

dissertation). University of Utrecht, Utrecht, Netherlands.

Zhi, X. Y., Zhao, W., Li, W. J., & Zhao, G. P. (2012). Prokaryotic systematics in the

genomics era. Antonie van Leeuwenhoek, 101(1), 21–34.

Zmasek, C. M., & Eddy, S. R. (2002). RIO: Analyzing proteomes by automated

phylogenomics using resampled inference of orthologs. BMC BIoinformatics,

3(1), 14.

www.manaraa.com

35

Appendices

www.manaraa.com

36

Appendix A: Tables

Table 1. Comparison of annotation pipelines.

Pipeline Gene-prediction

software

Number of database

searches

Approximate run-time

DOE/JGI Prodigal 6 (sequential) Up to 2 weeks (batch, server)

RAST Glimmer 1 12-24 hours (server)

ORNL Prodigal 4 6-12 hours or ~100 CPU hours

www.manaraa.com

37

Table 2. Strains included in the pan-genome database.

Strain Genome size

(Mb)

Protein-

coding genes

S. Paratyphi A str. AKU_12601 4.58 4,351

S. Paratyphi A str. ATCC 9150 4.59 4,348

S. 4,[5],12:i:- str. CVM23701 4.90 4,694

S. Heidelberg str. SL476 4.89 4,680

S. Heidelberg str. SL476 4.73 4,432

S. Saintpaul str. SARA23 4.72 4,350

S. Saintpaul str. SARA29 4.93 4,757

S. Javiana str. GA_MM040414 4.55 4,221

S. Schwarzengrund str. CVM196333 4.71 4,551

S. Schwarzengrund str. SL480 4.76 4,547

S. Typhi str. CT18 4.81 5,065

S. Typhi str. Ty2 4.79 4,632

S. Tennessee str. CDC07-0191 4.79 4,546

S. Agona str. SL483 4.84 4,508

S. Kentucky str. CDC 191 4.70 4,383

S. Kentucky str. CBM29188 4.79 4,745

S. Weltevreden str. HI N05-537 5.05 4,784

S. Virchow str. SL491 4.88 4,596

S. Paratyphi C str. RKS4594 4.83 4,690

S. Chorleraesuis str. SC-B67 4.76 4,792

S. Enteritidis str. P125109 4.69 4,363

S. Gallinarum str. 287/91 4.66 4,466

S. Dublin str. CT_02021853 4.84 4,682

S. Typhimurium str. D23580 4.88 4,804

S. Typhimurium str. 14028S 4.76 4,653

S. Typhimurium str. LT2 4.86 4,635

S. Paratyphi B str. SPB7 4.86 4,555

S. Newport str. SL317 4.95 4,720

S. Newport str. SL254 4.83 4,710

S. Hadar str. RI_05P066 4.79 4,487

S. arizonae str RSK2980 4.60 4,278

www.manaraa.com

38

Appendix B: Figures

Figure 1. Building a hypothetical pan-genome in concept. Part (A.) illustrates the difference

between a pan-genome and a core genome, which consists of all genes from every genome. Part (B.)

demonstrates how a pan-genome is a sort of “layering” of the genes from each genome (note that this

‘genomic scaffold’ is purely conceptual; in the end, the pan-genome is merely the list of genes and their

products).

www.manaraa.com

39

Figure 2. Minimizing the false positive count and the false negative rate. As seen here, the

number of false positives (defined as secondary matches which fall above the minimum threshold)

decreases as the minimum threshold is decreases, whereas the ‘false negative rate’ (i.e., as the number of

proteins not matched in the database search divided by the total number of query proteins) increases he

ideal threshold. Thus, the best threshold is that where the two intersect and are therefore minimized with

respect to each other (as denoted by the black arrow).

www.manaraa.com

40

Figure 3. Outline of the pan-genome assembly workflow. Shown here is the step-by-step

workflow for producing the pan-genome of S. enterica, and specifically, its annotated database of proteins.

www.manaraa.com

41

Figure 4. The phylogenetic tree of the 31 S. enterica strains. Shown here is the tree built using

ANI in Jspecies and the BioNJ algorithm in APE package for R, which demonstrates tight grouping in all S.

enterica subsp. enterica strains and S. enterica subsp. arizonae as a clear out-group, with a relative distance

of several times that of any other two strains.

www.manaraa.com

42

Figure 5. Functional prediction of proteins using R-FAP. The basic workflow of R-FAP:

protein sequences, translated from gene predictions made in PRODIGAL, are searched against the pan-

genome database using Simrank. All genes found in this database are given the annotation of their match in

the database, while all proteins not found in the database are collected and sent to the internal ORNL

annotation pipeline for annotation. Upon manual curation, these proteins and their annotations are added to

the pan-genome database to help expedite future runs.

www.manaraa.com

43

Appendix C: The R-FAP Pan-genome Assembly Source Code

#!/usr/bin/perl

use File::Path qw(make_path remove_tree);
use Getopt::Long;
use lib 'lib';
use String::Simrank;

$start_time = `date`;
$start_seconds = time;

print "\n\nStarted at: $start_time\n\n";

print "\n--\n";
print "Welcome to the Rapid Functional Annotation of Prokaryotes (R-FAP) pan-genome\n";
print "database builder. This software takes the complete proteomes from a set of\n";
print "strains which you select, build the protein families using OrthoMCL, then define\n";
print "a consensus sequence for each protein family with the Muscle alignment software.\n";
print "--\n\n\n";

print "Please ensure that the OrthoMCL directory is your current working directory,\n";
print "otherwise the OrthoMCL command will fail and the process will come to a halt.\n";
print "\nPlease also specify the path to OrthoMCL (or leave blank if running at ORNL):\n";

$PATH_TO_ORTHOMCL = <STDIN>;

print "\nAnd please also specify the pathway to the Muscle alignment software:\n";

$PATH_TO_MUSCLE =<STDIN>;

if($PATH_TO_ORTHOMCL !~ /\w/)
{
 $PATH_TO_ORTHOMCL = "/auto/database/orthomcl/"; #this will act as a default directory when the code
is run on ORNL computers
}
elsif($PATH_TO_ORTHOMCL!~ /^\// || $PATH_TO_ORTHOMCL!~ /\/$/)
{#this elsif serves in case the user forgets to put a '/' at the front or back of the directory name
 if($PATH_TO_ORTHOMCL!~ /^\//)
 {
 substr($PATH_TO_ORTHOMCL,0,0) = "/";
 }

 if($PATH_TO_ORTHOMCL!~ /\/$/)
 {
 $PATH_TO_ORTHOMCL .= "/";
 }
}

if($PATH_TO_MUSCLE !~ /\w/)
{
 #No reason to launch a 15-hour OrthoMCL run if you don't have the needed software on the receiving

end.
 die "Muscle location not specified\n\n";
}
elsif($PATH_TO_MUSCLE!~ /^\// || $PATH_TO_MUSCLE!~ /\/$/)
{
 if($PATH_TO_MUSCLE!~ /^\//)
 {
 substr($PATH_TO_MUSCLE,0,0) = "/";
 }

 if($PATH_TO_MUSCLE!~ /\/$/)
 {
 $PATH_TO_MUSCLE .= "/";
 }
}

www.manaraa.com

44

print "As required by most implementations of OrthoMCL, please ensure that each strain\n";
print "is represented by its complete set of protein sequences in a separate FASTA file\n";
print "with the name ending in '.fa' and placed into the OrthoMCL data directory.\n\n";

print "Please specify these files now, each separated by a comma with no spaces:\n\n";

$file_names= <STDIN>;

The following sets of 'if' statements attempt to ensure that the user has formatted the
input correctly; it will not catch every error (OrthoMCL is surprisingly particular in
this regard) but anything not caught here will be caught by OrthoMCL itself.
if ($file_names !~ /\.fa/ || $file_names =~ /(\.fasta|\.FASTA|\.faa)/)
{
 die "\n\nFile names must be formated 'name.fa'\n\n";
}

if($file_names !~ /\,+/)
{
 die "\n\nYou must input at least two files.n\n";
}

chomp $file_names;
$file_names =~ s/ //;

print "\n\nAlso, since the SearchIO feature of BioPerl is a requirement for OrthoMCL\n";
print "implementation, please specify the path to BioPerl with '\/' at front and back\n\n";

$bioperl_location = <STDIN>;
chomp $bioperl_location;

if($bioperl_location !~ /^\//)
{
 substr($bioperl_location,0,0) = "/";
}

if($bioperl_location !~ /\/$/)
{
 $bioperl_location .= "/";
}

print "\n\n\n";

In order, the features of the OrthoMCL command as used for the purpose of creating a pan-genome are:
-I${bioperl_location}: informs OrthoMCL of the BioPerl file location.
orthomcl.pl: the central Perl wrapper script which calls the various algorithms.
--mode 1: OrthoMCL has four different modes; building new protein families requires Mode 1.
--fa_files ${file_names}: tells the OrthoMCL script what to look for in the data directory

`perl -I${bioperl_location} orthomcl.pl --mode 1 --fa_files ${file_names}`; || die "\nCan't run without
OrthoMCL!\n\n";

$date = `date`;

#the following uses the same method as OrthoMCL to create and name the working directory for a given

OrthoMCL run
$ORTHOMCL_WORKING_DIR = $PATH_TO_ORTHOMCL.(split(" ",$date))[1]."_".(split(" ",$date))[2]."/";

print "The path to the working directory is: $ORTHOMCL_WORKING_DIR\n\n\n";

make_path("$ORTHOMCL_WORKING_DIR/R-FAP/"); #create a new directory in the given working directory for

files related to R-FAP

#the following variables contain the paths to various OrthoMCL output files which are needed for the

next step
$all_fa = $ORTHOMCL_WORKING_DIR."tmp/all.fa";
$all_blast = $ORTHOMCL_WORKING_DIR."tmp/all.blast";
$all_blast_bbh = $ORTHOMCL_WORKING_DIR."all_blast.bbh";

www.manaraa.com

45

$all_blast_score = $ORTHOMCL_WORKING_DIR."R-FAP/all_blast_score.bbh";
$blast_error = $ORTHOMCL_WORKING_DIR."R-FAP/blast_error.txt";
$all_orthomcl = $ORTHOMCL_WORKING_DIR."all_orthomcl.out";
$orthomcl_score_matrices = $ORTHOMCL_WORKING_DIR."R-FAP/orthomcl_score_matrices.txt";

The following command calls the script which creates the reciprocal score matrices for each
cluster created in OrthoMCL. It starts with the raw blast scores and creates a set of normalized
scores (raw score divided by sequence length) which are then organized into a series of matrices.

$output = `perl ./Create_OrthoMCL_matrices.pl $all_fa $all_blast $all_blast_bbh $all_blast_score
$blast_error $all_blast_score $all_orthomcl $orthomcl_score_matrices`;
print "$output\n";

$final_cluster_lists = $ORTHOMCL_WORKING_DIR."R-FAP/final_cluster_lists.txt";

The following command takes the matrices which were just created and uses them to tease apart those
clusters which either contain multiple protein families or which contain wrongly-included proteins.
This script calculates the threshold as the average of all scores in the matrix, and then iterates
through each position of the matrix (and its corresponding position on the other side) and compares
these scores to the threshold. If they are less than 80% of the threshold, the two corresponding
proteins are not considered a match. Clusters are thus teased apart and printed to a list.

`perl ./Split_OrthoMCL_clusters.pl $orthomcl_score_matrices $final_cluster_lists`;

$alignments_directory = $ORTHOMCL_WORKING_DIR."R-FAP/alignments/"; #this will be used for 'make_path'
$single_occurence_proteins = $ORTHOMCL_WORKING_DIR."R-FAP/single_occurence_proteins.fasta";

The following command takes the list file created above and pulls the sequences from the complete
sequence 'all.fa' file created by OrthoMCL. These are organized in to a set of FASTA files, one
for each cluster.
`perl ./Collect_sequences.pl $all_fa $final_cluster_lists $alignments_directory
$single_occurence_proteins`;

make_path($alignments_directory."muscle_output/";) #for organization sake, create a new subdirectory

for all the alignment files
$muscle_output = $alignments_directory."muscle_output/";

The following command calls a script (notice it calls a Python script instead of a Perl script)
written by a colleague at ORNL (JJ Chai) which runs the Muscle alignment algorithm on multiple
processors in parallel. It has been modified to allow the user to tell it the location of the Muscle
software. For these purposes, it is hard-coded to output in Clustal format (".aln").

`python ./Parallelized_muscle.py -d $alignments_directory -o $muscle_output -m $PATH_TO_MUSCLE -p 4`;

$pre_cat_alignments = $muscle_output."*.aln";
$concatenated_alignments = $muscle_output."all_alignments.txt";

The following is a bash command which takes all of the alignment files just created and joins them.
`cat $pre_cat_alignments > $concatenated_alignments`;

$initial_families = $ORTHOMCL_WORKING_DIR."R-FAP/initial_protein_families.fasta";

The following takes the joint file just created and processes each alignment to produce a consensus
sequence to represent each alignement, which in turn represent each protein family with at least two
members in the pan-genome. The method for determing consensus is to iterate through every position
in a given alignment and determine the most-common residue at every point which isn't universally
conserved. The resulting sequences are then printed to a file as the initial pan-genome database.

`perl ./Create_consensus_sequences.pl $concatenated_alignments $initial_families`;

#---

Everything which follows is the final post-processing of the protein families and single-occurence
proteins to ensure that every sequence included in the pan-genome database is sufficiently unique
so as to minimize spurious matches and thereby, spurious annotation. The method by which this is
accomplished is to use the Simrank algorithm to determine the primary and secondary matches of each
sequence at 50% similarity or higher; these secondary matches, where they exist, represent two
sequences which are too similar to be included in the same database. For the sake of maximum number
of possible k-mers in the final database, the method eliminates the shorter of the two sequences.

www.manaraa.com

46

This method is first applied to the initial set of protein families, using the file as both subject
and querey, and then applied to the set of single-occurence proteins.

open(SEQ,$initial_families) || die "Did not open $sequence_filename.\n\n";

$i=0;
$sequence_name = '';

#first, open the initial protein family FASTA file and create a hash of its sequences...
while($buf = <SEQ>)
{
 chomp $buf;

 if($buf =~ /\>/)
 {
 if($i>0)
 {
 $Lengths{$sequence_name} = length($Sequences{$sequence_name});
 }

 $sequence_name = substr $buf, 1;

 $sequence = '';
 $length = 0;
 }
 elsif($buf !~ /\>/ && $buf =~ /\w/)
 {
 $Sequences{$sequence_name} .= $buf;
 }
 else
 {
 }

 $i++;
}

$length_before = scalar (keys %Sequences);
print "\n\nThe total number of sequences in the initial database is: $length_before.\n\n";

$eliminate_redundant_clusters = new String::Simrank ({ data => $initial_families });

$eliminate_redundant_clusters->formatdb({ wordlen => 10,
 minlen => 10,
 });

#...then use Simrank to match the initial families against themselves...
$matches = $eliminate_redundant_clusters->match_oligos({

query => $initial_families, #the file of query sequences
 outlen => 2, #the number of matches to return for a query sequence
 minpct => 50, #the minimum percent similarity to consider a match
 silent => true,
 valid_chars => 'ABCDEFGHIJKLMNOPQRSTUVWYXZ',
 });
#...then look at the resulting matches.
foreach $key (keys %{$matches})
{

 $k = 0;
 foreach $hit (@{ $matches->{$key} })
 {
 $gene_name = $key;
 $match = $hit->[0];
 $match_percent = $hit->[1];

 # it is reasonable to assume that in almost all cases, the top match for
 # any sequence will be itself so we're interested in the other match
 if($key ne $match)
 {
 if($Lengths{$key}<=$Lengths{$match})
 {
 #delete the shorter one

www.manaraa.com

47

 delete $Sequences{$key};
 }
 }
 }
}

$length_after = scalar(keys %Sequences);
print "The total number of protein families after removing redunant sequences: $length_after.\n\n";

$complete_clusters = $ORTHOMCL_WORKING_DIR."R-FAP/final_protein_families.fasta";
open(PROC, ">$complete_clusters");

foreach $protein (keys %Sequences)
{
 print PROC ">$protein\n$Sequences{$protein}";
}

close PROC;
undef %Sequences;
undef %Lengths;

Now that redundant sequences have been eliminated in the protein families, this must also be
done in the so-called single-occurence proteins. This uses the exact same approach as before.

open(SEQ,$single_occurence_proteins) || die "Did not open $sequence_filename.\n\n";

$i=0;
$sequence_name = '';

#first, open the initial single-occurence protein FASTA file and create a hash of its sequences...
while($buf = <SEQ>)
{
 chomp $buf;

 if($buf =~ /\>/)
 {
 if($i>0)
 {
 $Lengths{$sequence_name} = length($Sequences{$sequence_name});
 }

 $sequence_name = substr $buf, 1;

 $sequence = '';
 $length = 0;
 }
 elsif($buf !~ /\>/ && $buf =~ /\w/)
 {
 $Sequences{$sequence_name} .= $buf;
 }
 else
 {
 }

 $i++;
}

$length_before = scalar (keys %Sequences);
print "\n\nThe total number of sequences in the initial database is: $length_before.\n\n";

$reduce_singles = new String::Simrank ({ data => $single_occurence_proteins });

$reduce_clusters->formatdb({ wordlen => 10,
 minlen => 10,
 });

#...then use Simrank to match the initial singles against themselves...
$reduced_matches = $reduce_singles->match_oligos({

query => $initial_families,
 outlen => 2,
 minpct => 50,

www.manaraa.com

48

 silent => true,
 valid_chars => 'ABCDEFGHIJKLMNOPQRSTUVWYXZ',
 });
#...then look at the resulting matches.
foreach $key (keys %{$reduced_matches})
{

 $k = 0;
 foreach $hit (@{ $matches->{$key} })
 {
 $gene_name = $key;
 $match = $hit->[0];
 $match_percent = $hit->[1];

 # it is reasonable to assume that in most cases, the top match for
 # any sequence will be itself so we're interested in the other match
 if($key ne $reduced_match)
 {
 if($Lengths{$key}<=$Lengths{$match})
 {
 #delete the shorter one
 delete $Sequences{$key};
 }
 }
 }
}

$length_after = scalar(keys %Sequences);
print "Total number of single-occurence proteins after removing redunant sequences:
$length_after.\n\n";

$reduced_singles = $ORTHOMCL_WORKING_DIR."R-FAP/reduced_singles.fasta";
open(RED, ">$reduced_singles");

foreach $protein (keys %Sequences)
{
 print RED ">$protein\n$Sequences{$protein}";
}

close RED;
undef %Sequences;
undef %Lengths;

Now that we've eliminated the redundant sequences in the protein families, we must do the same for
the single-occurence proteins to ensure that we do not include any sequences which were incorrectly
exclused from one of the protein families. This is much more conceptually simple: if it matches a
protein family consensus sequence above 50% similarity, it is eliminated.

open(SINGLE, $reduced_singles);

while($buf=<SINGLE>)
{
 chomp $buf;

 if($buf =~ /\>/)
 {

 $sequence_name = substr $buf, 1;

 $sequence = '';
 $length = 0;
 }
 elsif($buf !~ /\>/ && $buf =~ /\w/)
 {
 $Sequences{$sequence_name} .= $buf;
 }
 else
 {
 }
}

$eliminate_redundant_singles = new String::Simrank ({ data => $complete_clusters });

www.manaraa.com

49

$eliminate_redundant_singles->formatdb({ wordlen => 10,
 minlen => 10,
 });

$single_matches = $eliminate_redundant_singles->match_oligos({

query => $reduced_singles,
 outlen => 1,
 minpct => 50,
 silent => true,
 valid_chars => 'ABCDEFGHIJKLMNOPQRSTUVWYXZ',
 });

foreach $key (keys %{$single_matches})
{
 if(@{ $matches->{$key} } != '')
 {
 delete $Sequences{$key};
 }

}

open(FINAL,">>$complete_clusters");

foreach $sequence (keys %Sequences)
{

Append the final set of single-occurence proteins to the file already containing the final set

of protein families and this becomes our final pan-genome database. It is now ready to be

implemented as the user sees fit.
 print FINAL ">$sequence\n$Sequences{Sequence}";
}

close FINAL;

$end_time = `date`;
$end_seconds = time;
$run_seconds = $end_seconds-$start_seconds;
$run_hours = $run_seconds/3600;

print "\n\nStarted at: $start_time\nEnded at: $end_time\nTotal run time (hours): $run_hours\n\n";

www.manaraa.com

50

Appendix D: The R-FAP Annotation Tool Source Code

#!/usr/bin/perl

$start_time = localtime(time);

print "Started at $start_time\n\n";

use Getopt::Long;

use lib 'lib';

use String::Simrank;

use autodie;

use File::Path qw(make_path remove_tree);

print "\n--\n";

print "Welcome to the main Rapid Functional Annotation of Prokaryotes (R-FAP) tool.\n";

print "database builder. This software will take the complete gene translations from a\n";

print "set of selected strains and provide annotations for them in under a minute.\n";

print "--\n\n\n";

print "Please provide the full path to the directory of the .faa files to be annotated:\n";

$operating_directory = <STDIN>;

if($operating_directory !~ /\w/) #exit if user provides no directory

{

 die "You must specify where to find the input files!\n\n";

}

elsif($operating_directory!~ /^\// || $operating_directory!~ /\/$/)

{#in case user forgets to include the '/' at the beginning or end

 if($operating_directory !~ /^\//)

 {

 substr($operating_directory,0,0) = "/";

 }

 if($operating_directory !~ /\/$/)

 {

 $operating_directory .= "/";

 }

}

#these two 'make_path' commands create the subdirectories for the output files

make_path($operating_directory."annotation_files/");

make_path($operating_directory."unmatched_sequence_files");

print "Next, please enter the full path to the FASTA-formatted pan-genome database\n";

print "which will be used to match query proteins to their appropriate annotations:\n\n";

$pangenome_filepath = <STDIN>;

if($pangenome_filepath !~ /\w/)

{

 die "You must specify where to find the database files!\n\n";

}

elsif($pangenome_filepath !~ /^\//)

{

 substr($pangenome_filepath,0,0) = "/";

}

print "\nNow, please specify the full path to the three-column annotation source\n";

print "file. (It would probably be best to make sure its located in the operating\n";

print "directory, but in either case you need to enter the full path to it here.)\n\n";

$annotation_filename = <STDIN>;

if($annotation_filename !~ /\w/)

{

 die "You must provide a source of annotations!\n\n";

}

elsif($annotation_filename !~ /^\//)

{

 substr($annotation_filename,0,0) = "/";

}

open(ANNO,$annotation_filename) || die "Could not open $annotation_filename\n\n";

$anno_iterator = 0;

www.manaraa.com

51

This loop iterates through the annotation file, which is a three-column, tab-delimited

file of basic annotation for each gene and the tool used to determine it

while($buf = <ANNO>)

{

 chomp $buf;

 if($anno_iterator > 0)

 {

 ($protein,$id_tool,$annotation) = split(/\t/, $buf);

 if($id_tool !~ /\w/)

 {

 $id_tool = "";

 }

 $Annotation_hash{$protein} = "$id_tool\t$annotation";

 }

 $anno_iterator++;

}

Below are the commands which declare a new Simrank object and create a new binary database file

$sr = new String::Simrank ({ data => $pangenome_filepath });

if ($cl_args->{"rebuild"} || !$sr->{binary_ready})

{

 $sr->formatdb({ wordlen => 10,

 minlen => 10,

 });

}

$i=0;

This loop will iterate through all of the '.faa' files in the specified directory and annotate them

while (defined($sequence_filename = glob $operating_directory.'*.faa'))

{

 open(SEQ,$sequence_filename) || die "Did not open $sequence_filename.\n\n";

 $sequence_name = '';

 while($buf = <SEQ>)

 {

 chomp $buf;

 if($buf =~ /\>/)

 {

 $sequence_name = substr $buf, 1;

 $sequence = '';

 $length = 0;

 }

 elsif($buf !~ /\>/ && $buf =~ /\w/)

 {

 $Sequences{$sequence_name} .= $buf;

 }

 else

 {

 }

 }

 close SEQ;

 $number_of_query_genes = scalar(keys %Sequences);

 $current_time = localtime(time);

 print "\nStarted at $start_time\nCurrent time is $current_time\n\n";

 print "Number of genes in $sequence_filename = $number_of_query_genes\n";

 #30% appears to be the lowest point at which accuracy is still maintained at 100%

 $minimum_match_percentage = 30;

 #this is actually just a count of the number of secondary matches found by Simrank

 $number_of_false_positives = 0;

 #this is actually just a percentage of the total proteins in a genome which Simrank doesn't find

 $false_negative_rate = 0;

 $j=0;

 $number_of_false_positives = 0;

www.manaraa.com

52

 undef %Match_list;

 undef @putative_new_genes;

 # The following command calculates the match between each query protein and each sequence

 # in the search database; these matches are sorted most- to least-similar and retunred as

 # a hash (specifically, a hash of arrays)

 $matches = $sr->match_oligos({ query => $sequence_filename,

 outlen => 2,

 minpct => $minimum_match_percentage,

 silent => true,

 valid_chars => 'ABCDEFGHIJKLMNOPQRSTUVWYXZ',

 });

 # Once this hash has been created, one must step through it protein at a time; each query

 # protein has an entry in the hash, even if it didn't match anything in the database.

 foreach $key (keys %{$matches})

 {

 #this 'if' tests to see if a protein's entry in the hash is blank; if it is, then it

 #didn't match to anything in the database above the specified similarity threshold.

 if(@{ $matches->{$key} } == '')

 {

 push(@putative_new_genes, $key);

 }

 $k = 0;

 foreach $hit (@{ $matches->{$key} })

 {

 $gene_name = $key;

 $match = $hit->[0];

 $match_percent = $hit->[1];

 if($k==0) #this indicates the first (and therefore best) match

 {

 $Match_list{$gene_name} .= "$gene_name\t$Annotation_hash{$match}";

 }

 elsif($k>0) #even if this is ever true, it represents a spurious match

 {

 $number_of_false_positives++

 }

 $k++;

 }

 $j++;

 }

 $number_of_matched_genes = scalar(keys %Match_list);

 #the following calculates the 'miss rate' by dividing the number which ACTUALLY matched

 #at or above the given threshold from the total number of proteins searched.

 $false_negative_rate = 100*(1-($number_of_matched_genes/$number_of_query_genes));

 $i++;

 print "Currently on genome $i of 100\n\tMissed rate = $false_negative_rate\n";

 print "\tNumber of secondary matches = $number_of_false_positives\n";

 $short_input_filename_start = rindex($sequence_filename,"/");

 $short_input_filename = substr($sequence_filename,$short_input_filename_start);

 while($short_input_filename =~ /\./)

 {

 chop $short_input_filename;

 }

 #create the output file from the input file name

 $final_output_filename =

$operating_directory."annotation_files/".$short_input_filename."_annotation.txt";

 open(OUT, ">$final_output_filename") || die "Could not create and/or open

$final_output_filename.\n\n";

 #create the name for the FASTA file of unmatched proteins

 $unmatched_genes_filename =

$operating_directory."unmatched_sequence_files/".$short_input_filename."_unmatched.fasta";

 open(UNMATCHED, ">$unmatched_genes_filename") || die "Could not create and/or open

$unmatched_genes_filename.\n\n";

 print OUT "Protein\tID_tool\tAnnotation\n";

 foreach $gene (keys %Match_list)

 {

www.manaraa.com

53

 print OUT "$Match_list{$gene}\n"; #note that this is formatted like the annotation file

 }

 close OUT;

 for($k=0;$k<scalar(@putative_new_genes);$k++)

 {

 print UNMATCHED ">$putative_new_genes[$k]\n$Sequences{$putative_new_genes[$k]}\n";

 }

 close UNMATCHED;

 #it's important to 'undef' (erase) these data structures each time

 undef @putative_new_genes;

 undef %Match_list;

 undef %Sequences;

}

$current_time = localtime(time);

print "\n\nStarted at $start_time\nFinished at $current_time\n\n\n";

www.manaraa.com

54

Vita

Jordan M. Utley attended Trevecca Nazarene University, where he received a Bachelor of

Science, magnum cum laude, in biology with minors in chemistry and history in May of

2010. He was subsequently admitted to the University of Tennessee/Oak Ridge National

Laboratory Graduate School of Genome Science and Technology in August of 2010.

	R-FAP: Rapid Functional Annotation of Prokaryotes Using Taxon-specific Pan-genomes and 10-mer Peptides
	Recommended Citation

	tmp.1397675244.pdf.EyDfj

