
www.manaraa.com

University of Tennessee, Knoxville University of Tennessee, Knoxville 

TRACE: Tennessee Research and Creative TRACE: Tennessee Research and Creative 

Exchange Exchange 

Masters Theses Graduate School 

5-2014 

R-FAP: Rapid Functional Annotation of Prokaryotes Using Taxon-R-FAP: Rapid Functional Annotation of Prokaryotes Using Taxon-

specific Pan-genomes and 10-mer Peptides specific Pan-genomes and 10-mer Peptides 

Jordan Matthew Utley 
University of Tennessee - Knoxville, jutley6@vols.utk.edu 

Follow this and additional works at: https://trace.tennessee.edu/utk_gradthes 

 Part of the Bioinformatics Commons, Biology Commons, Computational Biology Commons, and the 

Genomics Commons 

Recommended Citation Recommended Citation 
Utley, Jordan Matthew, "R-FAP: Rapid Functional Annotation of Prokaryotes Using Taxon-specific Pan-
genomes and 10-mer Peptides. " Master's Thesis, University of Tennessee, 2014. 
https://trace.tennessee.edu/utk_gradthes/2780 

This Thesis is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and 
Creative Exchange. It has been accepted for inclusion in Masters Theses by an authorized administrator of TRACE: 
Tennessee Research and Creative Exchange. For more information, please contact trace@utk.edu. 

https://trace.tennessee.edu/
https://trace.tennessee.edu/
https://trace.tennessee.edu/utk_gradthes
https://trace.tennessee.edu/utk-grad
https://trace.tennessee.edu/utk_gradthes?utm_source=trace.tennessee.edu%2Futk_gradthes%2F2780&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/110?utm_source=trace.tennessee.edu%2Futk_gradthes%2F2780&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/41?utm_source=trace.tennessee.edu%2Futk_gradthes%2F2780&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/28?utm_source=trace.tennessee.edu%2Futk_gradthes%2F2780&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/30?utm_source=trace.tennessee.edu%2Futk_gradthes%2F2780&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:trace@utk.edu


www.manaraa.com

To the Graduate Council: 

I am submitting herewith a thesis written by Jordan Matthew Utley entitled "R-FAP: Rapid 

Functional Annotation of Prokaryotes Using Taxon-specific Pan-genomes and 10-mer Peptides." 

I have examined the final electronic copy of this thesis for form and content and recommend 

that it be accepted in partial fulfillment of the requirements for the degree of Master of Science, 

with a major in Life Sciences. 

Loren J. Hauser, Major Professor 

We have read this thesis and recommend its acceptance: 

Elizabeth Fozo, Brian O'Meara, Chongle Pan 

Accepted for the Council: 

Carolyn R. Hodges 

Vice Provost and Dean of the Graduate School 

(Original signatures are on file with official student records.) 



www.manaraa.com

R-FAP: Rapid Functional Annotation of Prokaryotes 

Using Taxon-specific Pan-genomes and 10-mer Peptides 

 

 

 

 

 

 

 

 

 
A Thesis Presented for the  

Master of Science 

Degree 

The University of Tennessee, Knoxville 

 

 

 

 

 

 

 

 

 

 

 

 
Jordan Matthew Utley 

May 2014 

 

 



www.manaraa.com

 
ii 

 

 
Copyright © 2014 by Jordan M. Utley 

All rights reserved. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



www.manaraa.com

 
iii 

Acknowledgements and Dedication 

 

There are a great many people to whom I owe my appreciation for being able to complete 

this thesis. First, my advisor, Dr. Loren Hauser, has been an incomparable source of 

insight regarding both this thesis as well as the field of biology as a whole.  

 

Secondly, Dr. Harry Richards, who originally recruited me to the University of 

Tennessee, has been an unwavering source of guidance and encouragement during my 

time here.  

 

Thirdly, my committee members, Drs. Brian O’Meara, Elizabeth Fozo, and Chongle Pan 

have been indispensable with their guidance, support, and patience throughout this 

process. 

 

Additionally, Miriam Land, J.J. Chai, Dylan Storey, and many other colleagues in the 

Scalable Computing a Leading-Edge Innovative Technologies (SCALE-IT) fellowship, 

the Genome Science and Technology (GST) program, and Oak Ridge National 

Laboratory have all been wonderful sources of both practical as well as conceptual 

advice. 

 

Denise Koessler—as a role model, a colleague, and a close personal friend—has helped 

shape my understanding and love of interdisciplinary collaboration through partnerships 

on multiple projects during my time at the University of Tennessee. 

 

My friends Patrick Taylor, Lane Carasik, Sara Konsavage, Jonathan Hopper, Jacob 

Hassman, Coleman Garner, and numerous others have sustained me on this path in 

countless intangible but nonetheless invaluable ways. 

 

And finally, my loving partner, Noah Mayhew, has been my rock through my time in 

graduate school, sharing in the joys and supporting me through the frustrations. 

 

This thesis is gratefully dedicated to all of these individuals who have had a hand in my 

success. 

 



www.manaraa.com

 
iv 

Abstract 
 

The growing implementation of next-generation sequencing technologies presents 

numerous fields with the opportunity to identify bacteria in near real-time. Fields such as 

counter-terrorism, forensics, medicine, and even microbial ecology are positioned to 

benefit from such advances and implementation. However, with the ability to rapidly 

produce high-quality sequence data comes the need to interpret this data as quickly as it 

is produced. While gene prediction algorithms have kept pace, functional prediction 

methods have not. 

To bypass the need for large-scale queries to multiple databases for each newly-

sequenced genome, the project detailed herein seeks to identify the genes shared within a 

taxonomic group using the pan-genome for that group. Doing so allows the pan-genome 

to be queried against this set of databases a single time, then rapidly searched with new 

genomes using k-mer peptide matching to make functional predictions. 

Thirty-one strains from Salmonella enterica subsp. enterica were used to build the 

pan-genome for this taxon as a test model. Proteins in a new genome could then be 

matched with complete consistence to the resulting database in a matter of seconds (per 

genome) using a k-mer peptide search algorithm. This represents a major advancement in 

annotation speed over existing pipelines.  
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Chapter 1 

Introduction and General Information 

 

 

Background: Addressing New Threats  

The threats of epidemics and pathogen-based bioweapon terrorist attacks have 

been brought to the forefront of the public’s attention several times over the last decade. 

Outbreaks of Severe Acute Respiratory Syndrome (SARS) (Lee, et al., 2003; Marra, et 

al., 2003) and various strains of influenza (The WHO Consultation on Human Influenza 

A/H5, 2005; Smith, et al., 2009), reports of increasing antibiotic resistance in various 

bacterial pathogens (Goldstein, et al., 2012; Ohnishi, et al., 2011), and the mail-borne 

anthrax attacks following the events of 9/11 have all demonstrated our vulnerability to 

such threats and the need for a rapid response involving the emerging field of microbial 

forensics  (Budowle, Murch, & Chakrabort, 2005). The first step in such a response is the 

identification of the responsible pathogen, and by necessity this step must be rapid. 

To this end, the advent of ever-faster sequencing technologies now allows a novel 

prokaryotic genome to be fully sequenced at 100x coverage and assembled in a matter of 

a few hours (Loman, et al., 2012). Furthermore, gene calling algorithms now take mere 

minutes per genome (Hyatt, et al., 2010), thus keeping pace with sequencing needs and 

technology. This technology is currently being put to the test at the University of 

California-Davis, where Dr. Bart Weimer and colleagues are funded by the US Food and 

Drug Administration to sequence the genomes of 100,000 foodborne pathogenic strains 

over the course of four years.   
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Challenges 

 However, while sequencing and gene-calling technologies are now fast enough to 

meet this challenge, current pipelines for functional annotation are not, as they rely on 

search to multiple database such as Pfam (Finn, et al., 2014), InterPro (Hunter, et al., 

2012), and the NCBI’s non-redundant (NR) protein database Even worse, some are 

hosted on remote servers and run in batches, which can delay results by weeks. Indeed, 

the Rapid Annotations using Subsystems Technology (RAST) system, as well as the 

internal ORNL pipeline, can annotate a new genome in 12-24 hours (Aziz, et al., 2008), 

whereas the DOE/JGI annotation pipeline relies on submissions to the Integrated 

Microbial Genomes (IMG) system (Markowitz, et al., 2006; Markowitz, et al., 2010), 

which are only processed every 2-3 weeks (Mavromatis, et al., 2009). Furthermore, none 

of these systems is designed to handle the dataflow from a project, which at full capacity 

will need annotations for veritable hundreds of genomes every week. On the other hand, 

since such a project will focus on strains of known species, existing annotations from 

such pipelines could be used in annotating new strains due to the small phylogenetic 

distance between them.  

Solutions 

The focus of this thesis, then, is a solution to this problem. The approach is based 

on the concept of pan-genomes, the collection of all genes/proteins at a given phyla level 

(species, subspecies, etc.). Such a collection must be built from a given set of 

representative genomes, accounting for orthologs and paralogs, as well as proteins unique 

to a single strain. Once such a set of proteins is amassed, they can be submitted for 
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annotation to an existing pipeline, a process which would need occur only once. 

Subsequently, this database of proteins can be rapidly searched with a newly-sequenced 

genome using the recently-recognized (Aziz, et al., 2008) method of k-mer peptide 

matching, which avoids the need for time-consuming alignments, instead counting the 

number of identical peptides of length k between database sequences and query 

sequences (Berendzen, et al., 2012). All that is needed after this is to apply annotation 

information to the query proteins from their respective matches in the database. 
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Chapter 2  

Literature Review 

In annotating any newly-sequenced prokaryotic genome, there are two primary 

steps which must be completed. First, the coding sequences for proteins and the various 

RNA molecules must be identified. Although prokaryotic genomes range from 140 

kilobases (kb) to 17 megabases (Mb), most fall in the 3-5 Mb range (Land, Details of a 

survey of sequenced bacterial genomes, 2014) and as such, identification must 

necessarily be accomplished in silico. This has been the focus of a great deal of research 

and several algorithms have been produced to address this problem. The second step of 

genome annotation is the process of determining what the newly-identified sequences 

actually do. While methods exist for identifying prominent RNA-encoding genes, such as 

tRNAs and rRNAs, in relatively short order, protein-coding genes are a different matter. 

To date, the process by which this process has been accomplished is to search the 

putative products of such genes against a series of curated databases, looking for 

similarities between these products and previously-characterized sequences. However, 

such searches frequently rely on time- and computationally-expensive processes such as 

sequence alignments and hidden Markov model searches in batch runs with other 

submissions. A prospective solution to this problem has been found in the area of k-mer 

peptide searches, which run rapidly and would allow for a single database (the pan-

genome) to be given a consensus annotation from numerous sources a single time, then 

searched with a new set of sequences any number of times. 
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Genome Annotation: Genes and Functions 

Gene prediction. The advent of complete genome sequencing, and particularly 

sequencing en masse with the advent of high-throughput technologies, has necessitated 

the development of tools to identify the coding regions of a novel genome. Early methods 

for this process coalesced as early as 1986 with the work of Mark Borodovsky in Markov 

chain models, culminating in his group’s Genmark software (Borodovsky & McIninch, 

1993), having since been updated to Genemark.hmm, which uses hidden Markov models 

(Lukashin & Borodovsky, 1998). Drawing on this work but instead using interpolated 

Markov models, the most commonly-used software for prokaryotic gene prediction, 

GLIMMER, was subsequently developed by the Salzberg research group (Salzberg, 

Delcher, Kasif, & White, 1998; Delcher, Bratke, Powers, & Salzberg, 2007). 

 However, while both Genmark and especially GLIMMER remain widely-used, 

their accuracies are sensitive to the %GC content the input genome, particularly above 

60% (McHardy, Goesmann, Pühler, & Meyer, 2004). As %GC content increases, the 

thymines and adenines needed for standard stop codons (TAG, TAA, and TGA) become 

increasingly rare, resulting in a larger number of long, non-coding open reading frames 

(ORFs) which GLIMMER and Genmark/Genemark.hmm are prone to incorrectly 

labeling as genes. In contrast, the more recently-developed PRODIGAL—which self 

trains on each genome, and uses a dynamic programming algorithm to call genes based 

primarily on hexamer (di-codon) frequency and ribosome binding site (RBS) strength and 

location relative to the start codon—is significantly less vulnerable to extremes in %GC 

content and is also reliably more accurate with regards to start calls (Hyatt, et al., 2010). 
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Because of these advantages, combined with the great speed with which PRODIGAL 

runs (generally 1-2 minutes per genome), this was used to identify genes for this project. 

(This was also done for the sake of consistency, since these strains were previously 

annotated using many different methods; as such, some genes and proteins used in this 

work differ from those found for these strains GenBank.) 

Function prediction. The process of identifying the function of protein-coding 

genes depends on the principle that homology (similarity of sequence due to a common 

ancestry) implies similarity of function. While there are certain acknowledged issues with 

this principle (Galperin & Koonin, 2012), it does largely hold up within the well-studied 

phyla of prokaryotes, where there has been a great deal of experimental verification 

(Koonin & Galperin, 2003). The application of this principle has primarily taken the form 

of searchable repositories of functional information gained from experimental data. Some 

of these are general-purpose databases, such as KEGG (Ogata, Goto, Fujibuchi, & 

Kanehisa, 1998), COG (Tatusov, Koonin, & Lipman, 1997; Kristensen, et al., 2010), the 

multi-database system of InterPro (Apweiler, et al., 2001; Hunter, et al., 2012) and the 

NCBI’s GenBank and protein domain database combined with the BLAST algorithm 

(Altschul, Gish, Miller, Myers, & Lipman, 1990; Benson, et al., 2014). Others, such as 

Pfam (Sonnhammer, Eddy, & Durbin, 1997; Finn, et al., 2014) act as domain-

identification tools, or serve to identify specific types of proteins, such as enzymes in the 

case of PRIAM (Claudel-Renard, Chevalet, Faraut, & Kahn, 2003). 

 While all of these databases provide functional information for a set of query gene 

products, the desire to achieve a comprehensive understanding of a given genome, as 
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well as to avoid bias, has led to the development of annotation pipelines. These pipelines 

take advantage of these and other databases using large-scale searches to align individual 

domains and whole proteins to database sequences and predict respective functions by 

homology. While there are numerous such pipelines, the details of three notable pipelines 

are outlined in Table 1 (note that all tables and figures are found in the appendices): the 

Rapid Annotations using Subsystems Technology (RAST) pipeline; the Department of 

Energy/Joint Genome Institute pipeline; and the internal pipeline used at Oak Ridge 

National Labority, developed from the DOE/JGI pipeline. 

Pan-genomes 

 A pan-genome, as the name would suggest, is a “genome” which represents all 

genes, both shared and unique, within a given taxonomic group, generally the species 

(Medini, Donati, Tettelin, Masignani, & Rappuoli, 2005). Building a pan-genome thus 

requires that the shared genes, or protein families, be identified and included. This 

process can be thought of as a “layering” of genes onto a conceptual genomic ‘scaffold’ 

(see Figure 1). Furthermore, in taxa with numerous (>75) members, going through the 

process of building an initial pan-genome using all members is not practical due to large 

computational costs, and a representative subset must be chosen instead; in this instance, 

it is important to ensure that this subset represents the full phylogenetic breadth of the 

taxon in question. 

Average Nucleotide Identity (ANI) and phylogenetic breadth. As mentioned 

previously, it is necessary to represent the phylogenetic diversity of the taxon for which 

the pan-genome is being constructed. Thus, in a species containing numerous strains, it 
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becomes necessary to select a sufficiently-diverse set of these strains such that the 

resulting pan-genome is adequately representative of the species. 

 Numerous methods have been used in the past to determine this phylogenetic 

diversity in prokaryotes. The advent of first-generation sequencing technology allowed 

comparison of conserved sequences like the 16s rRNA gene, or a conventional set of 

“core” proteins in the genome. More recently, however, the arrival of next-generation 

sequencers combined with ever-increasing computational power has allowed 

phylogenetics to be conducted on the genomic scale (Zhi, Zhao, Li, & Zhao, 2012). 

Though not without its own challenges, this approach overcomes the low resolving power 

of the relatively conserved 16s rRNA gene and the confounding myriad of potential 

issues brought on by lateral gene transfer in a small set of protein-coding genes (Sentausa 

& Fournier, 2013).  

 To take advantage of these developments in determining the phylogenetic 

diversity of the chosen strains, this project will establish the average nucleotide identity 

(ANI) of each strain relative to every other strain. There are several methods by which to 

accomplish this task, but the most efficient and straightforward is to produce alignments 

of uniform genome fragments from the different strains and calculate the ANI, which in 

reality is merely a percent similarity, based on the best of these alignments. The JSpecies 

software (Richter & Rossello-Mora, 2009) incorporates three separate algorithms for this 

purpose (BLAST, MUMer, and Tetra), which can be used together or separately and run 

in parallel. JSpecies creates a reciprocal similarity matrix from each algorithm which, 

with minor modifications, can be quickly imported to the APE phylogenetics package for 
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R (Paradis, Claude, & Strimmer, 2004). These matrices can then be used to build 

phylogenetic trees using several different algorithms, such as neighbor-joining (NJ), 

which in turn can be visualized and further manipulated in the Molecular Evolutionary 

Genetics Analysis (MEGA) package (Tamura, Stecher, Peterson, Filipski, & Kumar, 

2013). 

Protein families: orthologs vs. paralogs.  Once a representative set of strains has 

been chosen, it is necessary to identify from amongst this set, those genes which are 

equivalent from one genome to another. This requires distinguishing between orthologs, 

which are the true inter-genome equivalents, and paralogs, which represent intra-genome 

duplication events in ancestor species which, relatively unconstrained by evolutionary 

forces, frequently differ in function (Altenhoff & Dessimoz, 2012). This in turn presents 

unique challenges due to the large number and close relation of the considered strains. 

There are two primary computational approaches to solving this problem: tree 

reconciliation methods such as RIO (Zmasek & Eddy, 2002) and OrthoStrapper (Storm & 

Sonnhammer, 2002), or graph-based methods such as COG (Tatusov, Koonin, & Lipman, 

1997) and OrthoMCL (Li, Stoeckert, & Roos, 2003). Although primarily designed for 

analysis amoung eurkaroytes, OrthoMCL’s unique Markov clustering algorithm (van 

Dongen, 2000) combined with its parallelized nature makes it well-suited to the this 

project and is thus the method by which protein families will be determined for the pan-

genome. 
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Salmonella enterica: A Test-bed 

 It was necessary to choose a taxon in which to test the pan-genome building as 

well as function-prediction algorithms, which were the focus of this thesis. There were 

two overriding justifications for selecting Salmonella enterica, a gram-negative, rod-

shaped species which annually causes millions of cases of typhoid fever (Crump & 

Mintz, 2010) and non-typhoid infection (Chen, Wang, Su, & Chiu, 2013) such as poultry-

borne food poisoning (Cox, Cason, & Richardson, 2011); first, the deliverables of this 

thesis are primarily targeted to large sequencing projects such as Dr. Bart Weimer’s 

“100,000 genomes” project, which is focused on food-borne pathogens such as S. 

enterica. Secondly, the pan-genome of S. enterica has already been investigated 

previously (Jacobsen, Hendriksen, Aaresturp, Ussery, & Friis, 2011), which will allow 

for validation of the pan-genome building algorithm. 

Classification and Identification via k-mer Matching 

 As mentioned previously, the rate-limiting step in prokaryotic genome annotation 

is functional prediction of protein-coding genes. While some pipelines’ reliance on batch 

runs of numerous genomes every few days or weeks is a contributing factor, the primary 

delay is caused by querying one or more databases with each gene. This is because 

database queries necessitate creating alignments or performing Hidden Markov Model 

searches between query and database sequences; while such processes may need only a 

30 seconds or a minute per gene, this becomes time-consuming even for the fastest 

algorithms when faced with the need to identify several thousand genes per genome and, 

for projects such as Dr. Weimer’s, hundreds or thousands of genomes at a time. Recently, 
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however, it has been recognized that sequence similarity can be determined more rapidly 

by avoiding alignments completely and instead matching peptides, or substrings, of 

length k between query and subject sequences, be they whole genomes (Larsen, et al., 

2014) or individual genes and proteins. Percent similarity between two sequences is 

calculated by counting the number of Boolean matches and normalizing for the total 

length of the sequence. This has already been implemented for numerous purposes, 

including phylogenetics, alignment algorithms such as BLAST (Altschul, Gish, Miller, 

Myers, & Lipman, 1990), and metagenomics studies (Edwards, et al., 2012). Even more 

relevantly, the developers of the RAST pipeline have recently updated their methodology 

to include a k-mer matching step (Overbeek, et al., 2014). 

 However, unlike with the BLAST algorithm, in determining sequence relatedness 

by k-mer matching alone, k is not defined dynamically but is instead set by the user. 

Several groups have made the case for different values of k, but the developers of the 

Sequedex k-mer metagenomics tool have demonstrated that k=10 is the most sensible 

value (Berendzen, et al., 2012) for peptides, balancing sensitivity with exclusivity. 

Nevertheless, although Sequedex can process an entire genome in mere minutes, its 

current implementation focuses on functional and phylogenetic categorization of 

metagenomic data, making it poorly-suited both to detailed functional predictions in an 

assembled genome, as well as to integration into a larger pipeline. Therefore, the work in 

this thesis uses the Simrank algorithm (DeSantis, et al., 2011) for the ultimate purpose of 

matching query protein sequences to their corresponding sequences in the pan-genome. 

The Simrank algorithm is implemented as a Perl module, where it is first used to create a 
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binary database file of k-mer peptides of user-specified length from the initial collection 

of pan-genome protein sequences. Simrank then takes each query sequence and calculates 

matches by dividing the total number of matched peptides by the total length of the 

shorter of the two sequences. In all, once the binary file is in place, the runtime for 

Simrank on an average-sized S. enterica genome is measured not in minutes, but in 

seconds. 
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Chapter 3  

Materials and Methods 

Building the Pan-genome of Salmonella enterica subsp. enterica 

Determining phylogenetic breadth of representative strains.  In order to 

ensure that the pan-genome database sufficiently represented the phylogenetic diversity 

of S. enterica, the first step in building such a database was to build a phylogenetic tree 

with the prospective strains and compare it to existing phylogenies of S. enterica. For the 

reasons explained previously, the Average Nucleotide Identity (ANI) of the chosen 

strains relative to each other was used to create the distance matrix from which this tree 

was built. Using JSpecies v1.2.1, the complete genome sequence of each strain was first 

broken into non-overlapping fragments of 1020 nucleotides, and a reciprocal BLAST 

search of each fragment against every other fragment was run in parallel on 16 processors 

on the Asp cluster at ORNL. This process takes approximately 8-9 hours, and the 

resulting output is a matrix of the percent identities of each strain to every other strain. 

 This output forms the basis for a distance matrix. However, because this is a 

reciprocal search, there are two percentages for each pair of strains (that is to say, ‘Strain 

1’ has a certain percent identity to ‘Strain 2’ but ‘Strain 2’ can possess a different percent 

identity to ‘Strain 1’); this is inherent in the BLAST alignment process, as the resulting 

score is dependent on which sequence is considered the subject and which is considered 

the query. Nevertheless, there is a direct correlation between the proportional difference 

in sequence length and the difference in calculated similarity, meaning that significant 

discrepancies between corresponding scores generally arise only in the case of a 
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significant proportional difference in sequence length (which results in differing query 

coverage). In a species such as S. enterica, large differences in genome length do not 

exist and as such, each pair of corresponding scores was considered close enough in 

value (±1.5%) that merely averaging the two numbers to produce a single triangular 

matrix was determined to be acceptable. Subsequently, this was transformed into a true 

distance matrix by subtracting each of these percentages from 100, thus converting each 

number from a percent similarity to a percent difference, or distance. 

 Finally, the actual tree-building step was performed with the Ape phylogenetics 

package for R, using the neighbor-joining algorithm and writing to file using Netwick 

format. The tree was subsequently visualized using MEGA, which was also used to set 

the out-group, S. enterica subsp. arizonae, as the root for the tree. 

Determining protein families using OrthoMCL. Once a sufficiently broad 

phylogenetic range of strains had been chosen (for a complete list, see Table 2), the next 

step was to identify the protein families present in these strains. Therefore, in order to 

provide consistency and increased accuracy, all protein sequences were identified from 

the genome sequences using Prodigal and concatenated into a single list, which produced 

a total of 137,718 protein sequences. This file was subsequently used as the input for 

OrthoMCL, with the initial all-vs.-all BLAST search being run on 36 processors. In all, 

the OrthoMCL run took approximately 18 hours. 

 While OrthoMCL is both fast (considering the input size) and reliable, it is not 

perfect; approximately 5% of output clusters either represent multiple protein families 

grouped into a “super-cluster” or simply include one or more proteins which do not 
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belong. To correct for this, a file was created which displayed the BLAST bit scores, 

normalized to the sequence length, for each pair of proteins in a prospective cluster from 

OrthoMCL as a series of matrices. Using this file, the two scores for any two pairs of 

proteins were then averaged (as with the tree-building process mentioned previously), 

and if this average score was equal to or greater than the weighted average score of the 

cluster, the two proteins were considered a match. By iterating through each gene in a 

given prospective cluster and applying this threshold, an initial list of protein families 

was generated. 

Building consensus sequences with Muscle and most-common residues. The 

next step in building a pan-genome database is to determine the consensus sequence for 

each protein family. To this end, the sequences for all proteins in a newly-determined 

cluster were placed in a file, one file per cluster. The alignment for each cluster was then 

created using the Muscle algorithm (Edgar, 2004), distributed using a Python wrapper 

script provided by JJ Chai at ORNL. This script used the standard number of iterations 

for each alignment and output the resulting alignments in ClustalW format. In all, this 

process completed in approximately 20 minutes when run on 6 CPUs. 

Next, these alignments were concatenated into a single file and each alignment 

processed to produce a single consensus sequence for the protein family, by iterating 

through each position in the alignment. Whenever a given position was universally 

conserved, the corresponding residue was added to the end of the consensus sequence; in 

cases where a given position lacked universal consensus in the alignment, the most 

common residue at that position was determined and added to the consensus sequence; in 
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the case where a gap was the most common at a given non-conserved position, nothing 

was added to the consensus sequence. All protein family consensus sequences were 

ultimately printed to a FASTA-formatted file, and this process took approximately 30-45 

seconds in total. 

Eliminating redundant sequences and annotating the database. A checkpoint 

step in building the pan-genome as a searchable database is to ensure that no sequence is 

represented in the database more than once; this serves to eliminate unnecessary search 

space, as well as to prevent any mis-annotations due to spurious matches to query 

proteins. To accomplish this, the initial database was sorted from longest sequence to 

shortest, then split into five smaller files. Each file was used as the input to a Perl script, 

which used the Simrank Perl module to incrementally build and re-format a new database 

file. The first sequence was added to a blank database file, then the next-largest sequence 

was searched against this file using the Simrank matching algorithm; if the query protein 

matched below 50% similarity, it was added to the database file and this file was then re-

formatted into the necessary binary file. This process was repeated for each protein in the 

subset until a database of unique sequences had been created. This process was conducted 

in parallel for all five database-subsets. Then, database 2 was searched against database 1, 

and all proteins matching below 50% similarity were added to database 1, and this was 

repeated in series for databases 3-5 until a complete database of protein families was 

created. In all, this process ran in approximately 3 hours (the serial version of this process 

was also tested, but took over 3 days to complete). This entire process was then repeated 

for the list of proteins, which appear in the genome of only one representative strain. 
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Once a database of unique “single-occurrence” genes was created, it was concatenated 

with the database of unique protein families.  

 Finally, this complete set of proteins was annotated using the existing ORNL 

bacterial annotation pipeline. 

Searching the Pan-genome with Query Protein Sequences Using K-mer Peptides 

Identifying protein-coding, tRNA, and rRNA genes in novel query genomes.  

A new genome to be annotated was first input to Prodigal (Hyatt, et al., 2010) to produce 

a list of protein-coding gene coordinates in the genome. The sequences from these 

coordinates were then translated to protein sequences and collected into a single FASTA-

formatted file. tRNA and rRNA sequences were identified using tRNAScan (Fichant & 

Burks, 1991) and RNAmmer (Lagesen, et al., 2007), respectively. 

Using Simrank to match query proteins to database sequences. In order to 

implement rapid protein matching between those in a novel genome and those in the 

annotated database, a k-mer search was implemented using the Simrank module for Perl. 

The database file was imported and formatted to a binary file of the same name, using 

k=10 and minimum length of 10. Next, the FASTA-formatted file of proteins from the 

query genome was used as the argument to the Simrank search function, with the 

function set to return only top match above a certain minimum threshold. This threshold 

was determined dynamically for each genome by minimizing the number of false 

positives (i.e., the number of secondary matches above the threshold being tested) and the 

‘false negative’ rate (i.e., the percent of the total proteins not matched in the database at 

the threshold being tested) with respect to each other. This process is graphically 
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represented in Figure 2. The annotation for this matching protein was then copied to the 

output file of the pipeline. 

Identifying and annotating novel proteins in query genomes. To identify novel 

proteins in the query genome, the protein-matching Perl script iterated through each 

query protein’s entry in data structure returned by the Simrank search function. If a given 

protein did not match to any entry in the database at or above the threshold, its entry in 

this data structure was blank, and its locus tag and sequence were then added to a new 

data structure, and subsequently all un-matched proteins were printed to a separated 

FASTA-formatted file. This file was then used as input to the existing ORNL annotation 

pipeline. This annotation was then added to the output for the query genome.  

Testing R-FAP against existing pipelines: speed and accuracy.  Once the new 

annotation pipeline was in place, it was necessary to demonstrate it as a marked 

improvement over existing tools in the field. Since the original inspiration for the 

development of the tool, as well as one of its primary intended uses, has been the large-

scale sequencing projects such as that at UC-Davis, a test of the tool’s speed was 

conducted by running it on a total protein FASTA files from one hundred S. enterica 

strains. This served not only to determine a statistically-significant mean for run-time on 

a single genome, but also to test its ability to handle large number of genomes at a time. 

 To test the consistency and accuracy of the tool, it was run on the total protein 

sequences from a separately-annotated strain with a static threshold of 5% similarity. S. 

enterica genome. S. Cubana str. CFSAN002050 was annotated using both the internal 

ORNL pipeline and the R-FAP tool, and the resulting annotations for each protein were 
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then compared. The accuracy was then calculated as the percentage of proteins which 

showed consistency between the two sets of annotation. 
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Chapter 4  

Results, Discussion, and Recommendations 

The Pan-genome Assembly Process 

The workflow of the pan-genome assembly tool is outlined in Figure 3. In short, 

ANI for the 31 S. enterica strains was determined using Jspecies, which took 

approximately 6 hours to run. From this process, the BioNJ tree-building algorithm was 

used to produce the tree found in Figure 4, which shows that although most included 

strains represent minimal phylogenetic diversity, the inclusion of S. enterica subsp. 

arizonae increases the phylogenetic breadth to nearly 6%, comparable to existing trees 

for the species (National Center for Biotechnology Information, 2014). 

Using OrthoMCL to determine protein families took approximately 18 hours and 

produced a total of 7,330 initial protein clusters. Post-processing of these clusters using 

assemble_clusters.pl took less than two hours and resulted in a total of 9,028 clusters in 

all. The sequences of these clusters were then aligned using Muscle, which in parallelized 

form ran in approximately 25 minutes, and get_consensus.pl was then used to build a 

consensus sequence from each of these alignments. Finally, using the Simrank algorithm 

to remove redundant sequences, a final list of protein families was generated, totaling 

8,031 non-unique protein families (meaning, families found in two or more genomes) and 

3,395 “single-occurrence” families (meaning those proteins found in only one genome), 

for a total of 11,426 sequences in all. 
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R-FAP as a Tool for Function Calling and Annotation 

 The final workflow for protein function prediction is laid out in Figure 5. Briefly, 

the newly-predicted proteins in a novel strain of S. enterica are input to the Simrank 

algorithm, which splits them into 10-mer peptides and searches them against the 

annotated pan-genome database. Each protein which matches a database protein above 

the selected threshold is then given the annotation of that match. Each protein for which 

no match is found in the database must be annotated separately; it is intended that this 

will be done using the internal ORNL pipeline, which will produce annotations for the 

few unmatched proteins in short order. These annotations will then be output along with 

those found using R-FAP. 

 In terms of speed, R-FAP processed 100 S. enterica genomes using a dynamic 

threshold in 4 hours, 33 minutes, 39 seconds, for an average of 2 minutes and 44 seconds 

per genome. This version settled on a threshold of 70 or 75% in all cases. For 

comparison, a static-threshold (50% similarity) version of R-FAP was run on the same set 

of genomes and ran in just under 53 minutes, for an average of 31.8 seconds per genome. 

This speed-up, combined with few genes missed, was found to be preferable to a dynamic 

threshold (the discussion below explains why minimizing “false positive” secondary 

matches is of negligible significance to minimizing the number of genes missed) 

 Regarding accuracy, R-FAP matched 4,468 proteins out of 4,674 to the pan-

genome database at 5% similarity or above. Of these, 4,166 (93.5%) were given the exact 

same annotation by both tools. However, while the annotations for the pan-genome 

database in their current form are “single-entry” (meaning one piece of annotation per 
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protein family), those from a full genome annotated by the ORNL pipeline receive 

information for each queried database; deeper analysis and comparison of this 

information revealed of the 6.5% (292 proteins) which initially appeared inconsistent, 

3.9% (173 proteins) were actually correct and 2.6% (118 proteins) were mis-annotated 

due to their corresponding database sequences having been inconsistently labeled during 

the post-processing step which followed their original annotation. Ultimately, this 

analysis showed that only a single protein (representing just 0.02% of the 4,674 proteins) 

was incorrectly annotated by the R-FAP tool. 

Discussion and Recommendations 

 Thresholds and accuracy.  The process of determining the minimum match 

threshold in real-time was implemented for two primary reasons; first, to eliminate ‘false 

positive’ secondary matches from the Simrank algorithm; secondly, to ensure accurate 

annotations for all allowed matches. However, avoiding these so-called ‘false positives’ 

have little bearing on the function of R-FAP, as the top match is the only match 

considered regardless of whether there is a secondary match. Furthermore, testing 

demonstrated that the primary matches were accurate 99.8% of the time all the way down 

to 5% similarity, and 100% of the time above 30% similarity.  Since such a threshold 

results in an average of <5% of the total proteins being missed by R-FAP (which would 

then have to be annotated using the existing ORNL pipeline), the process of dynamically 

setting the match threshold for each new genome does not appear to be worth the time 

expenditure, and will likely be abandoned in the future. 
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Implications.  The issues which confounded testing of accuracy, such as prima 

facie differences in annotation that further analysis showed to be the same, highlight the 

importance of the annotations applied to pan-genome sequences. Thus, future work will 

likely involve manual curation of the database and the annotations which it contains to 

ensure the best possible accuracy. On the other hand, it is also possible that the 

search/matching algorithm itself might be improved. Currently, Simrank calculates the 

similarity between two sequences by counting the number of matching k-mers and 

dividing by the length of the shorter of the two sequences. This means that a sequence 

which represents only a single domain could match at a very high percent to a much 

larger sequence which happens to contain said domain; this could also cause problems in 

cases where pseudo-genes have been called as real genes. The single incorrectly-

annotated sequence is a prime example of both of these possibilities. R-FAP labeled it a 

2'-5' RNA ligase, but a BLAST search of the sequence indicated that it only covered 

~46% of 2'-5' RNA ligase and is likely a pseudo-gene; nevertheless, because the percent 

similarity was calculated based on the query sequence rather than the database sequence, 

it matched at 28% similarity. It is possible, therefore, that in the future it might be better 

to use the longer of the two sequences, or perhaps to simply use the length of the 

database sequence in all cases. 

Nonetheless, the primary impact of this work is as a proof-of-concept for the use 

of a pan-genome based k-mer matching approach to functional prediction in genome 

annotation. In point of fact, the RAST pipeline is perhaps the biggest prospective 

competitor to R-FAP due to its recently update to take advantage of k-mer peptide 
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matching, in place of alignments, to its FIGfam database (Overbeek, et al., 2014). 

However, RAST’s use of Glimmer to predict genes requires several iterations to achieve 

any level of accuracy and, combined with the massive search space inherent in the 

FIGfam database, this puts R-FAP at a distinct advantage. Indeed, whereas a pipeline 

such as that at ORNL spends approximately 90% of its 6-12 hours (~100 CPU hours) of 

runtime on functional prediction (Land, Details of the ORNL Microbial Annotation 

Pipeline, 2014), k-mer matching to a pan-genome database of proteins allows R-FAP to 

do the same process in seconds to minutes. In a hypothetical pipeline, therefore, 90% of 

the original CPU time would now be reduced by a factor of the genes annotated by R-

FAP as a proportion of the total number of genes. Put another way, if R-FAP identified 

95% of the total number of protein-coding genes in a genome, only 5% would need to be 

annotated using the traditional database search method. Thus, the CPU time would be 

reduced from ~100 hours to ~14.5 (~10 hours [gene prediction] + ~30 sec. [95% of 

functional prediction] + 4.5 hours [remaining 5%]). Thus, if 100 CPU hours represent ~8 

hours of runtime, runtime would be reduced to just over an hour. This alone represents a 

major advancement, but even more significant is the reduction in sheer computing power 

required to accomplish the task of annotation. 

Implementation. Two primary possibilities for implementation of R-FAP present 

themselves readily. The first, already discussed, is the large sequencing project, such as 

Dr. Weimer’s, which seeks to study pathogens and other organisms on a vast scale to 

gain insight into their phylogenetic and functional variability. Such projects will require 
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high-throughput annotation mechanisms in order to keep pace and allow researchers to 

interpret data in any semblance of real-time. 

The second possible implementation of a pipeline which uses R-FAP for protein 

function prediction is a rapid diagnostic tool for medical applications. As an increasing 

number of hospitals and clinics acquire next-generation sequencing technology to use in 

the real-time identification of pathogens, there will be an increasing need for rapid 

annotation of the output of these sequencers. A set of pan-genome databases for the most 

common human pathogenic species, combined with a pipeline based on R-FAP, would 

allow healthcare professionals to quickly identify not only a pathogen, but also the 

specific treatments to which it is resistant or susceptible. This in turn would allow the 

ability to make treatment decisions in a matter of hours rather than days, and could 

potentially save countless lives. 
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Appendix A: Tables 

Table 1. Comparison of annotation pipelines. 

Pipeline Gene-prediction 

software 

Number of database 

searches 

Approximate run-time 

DOE/JGI Prodigal 6 (sequential) Up to 2 weeks (batch, server)  

RAST Glimmer 1 12-24 hours (server) 

ORNL Prodigal 4 6-12 hours or ~100 CPU hours 
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Table 2. Strains included in the pan-genome database. 

Strain Genome size 

(Mb) 

Protein-

coding genes 

S. Paratyphi A str. AKU_12601 4.58 4,351 

S. Paratyphi A str. ATCC 9150 4.59 4,348 

S. 4,[5],12:i:- str. CVM23701 4.90 4,694 

S. Heidelberg str. SL476 4.89 4,680 

S. Heidelberg str. SL476 4.73 4,432 

S. Saintpaul str. SARA23  4.72 4,350 

S. Saintpaul str. SARA29 4.93 4,757 

S. Javiana str. GA_MM040414 4.55 4,221 

S. Schwarzengrund str. CVM196333 4.71 4,551 

S. Schwarzengrund str. SL480 4.76 4,547 

S. Typhi str. CT18 4.81 5,065 

S. Typhi str. Ty2 4.79 4,632 

S. Tennessee str. CDC07-0191 4.79 4,546 

S. Agona str. SL483 4.84 4,508 

S. Kentucky str. CDC 191 4.70 4,383 

S. Kentucky str. CBM29188 4.79 4,745 

S. Weltevreden str. HI N05-537 5.05 4,784 

S. Virchow str. SL491 4.88 4,596 

S. Paratyphi C str. RKS4594 4.83 4,690 

S. Chorleraesuis str. SC-B67 4.76 4,792 

S. Enteritidis str. P125109 4.69 4,363 

S. Gallinarum str. 287/91 4.66 4,466 

S. Dublin str. CT_02021853 4.84 4,682 

S. Typhimurium str. D23580 4.88 4,804 

S. Typhimurium str. 14028S 4.76 4,653 

S. Typhimurium str. LT2 4.86 4,635 

S. Paratyphi B str. SPB7 4.86 4,555 

S. Newport str. SL317 4.95 4,720 

S. Newport str. SL254 4.83 4,710 

S. Hadar str. RI_05P066 4.79 4,487 

S. arizonae str RSK2980 4.60 4,278 
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Appendix B: Figures 

 

Figure 1. Building a hypothetical pan-genome in concept.  Part (A.) illustrates the difference 

between a pan-genome and a core genome, which consists of all genes from every genome. Part (B.) 

demonstrates how a pan-genome is a sort of “layering” of the genes from each genome (note that this 

‘genomic scaffold’ is purely conceptual; in the end, the pan-genome is merely the list of genes and their 

products). 
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Figure 2. Minimizing the false positive count and the false negative rate.  As seen here, the 

number of false positives (defined as secondary matches which fall above the minimum threshold) 

decreases as the minimum threshold is decreases, whereas the ‘false negative rate’ (i.e., as the number of 

proteins not matched in the database search divided by the total number of query proteins) increases he 

ideal threshold. Thus, the best threshold is that where the two intersect and are therefore minimized with 

respect to each other (as denoted by the black arrow). 
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Figure 3. Outline of the pan-genome assembly workflow.  Shown here is the step-by-step 

workflow for producing the pan-genome of S. enterica, and specifically, its annotated database of proteins. 
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Figure 4. The phylogenetic tree of the 31 S. enterica strains. Shown here is the tree built using 

ANI in Jspecies and the BioNJ algorithm in APE package for R, which demonstrates tight grouping in all S. 

enterica subsp. enterica strains and S. enterica subsp. arizonae as a clear out-group, with a relative distance 

of several times that of any other two strains.  
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Figure 5. Functional prediction of proteins using R-FAP.  The basic workflow of R-FAP: 

protein sequences, translated from gene predictions made in PRODIGAL, are searched against the pan-

genome database using Simrank. All genes found in this database are given the annotation of their match in 

the database, while all proteins not found in the database are collected and sent to the internal ORNL 

annotation pipeline for annotation. Upon manual curation, these proteins and their annotations are added to 

the pan-genome database to help expedite future runs. 
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Appendix C: The R-FAP Pan-genome Assembly Source Code 

#!/usr/bin/perl  
   

   
use File::Path qw(make_path remove_tree);  
use Getopt::Long;  
use lib 'lib';  
use String::Simrank;  
   
$start_time = `date`;  
$start_seconds = time;  
   
print "\n\nStarted at: $start_time\n\n";  
   

   
print "\n--------------------------------------------------------------------------------\n";  
print "Welcome to the Rapid Functional Annotation of Prokaryotes (R-FAP) pan-genome\n";  
print "database builder. This software takes the complete proteomes from a set of\n";  
print "strains which you select, build the protein families using OrthoMCL, then define\n";  
print "a consensus sequence for each protein family with the Muscle alignment software.\n";  
print "--------------------------------------------------------------------------------\n\n\n";  
   
print "Please ensure that the OrthoMCL directory is your current working directory,\n";  
print "otherwise the OrthoMCL command will fail and the process will come to a halt.\n";  
print "\nPlease also specify the path to OrthoMCL (or leave blank if running at ORNL):\n";  
   
$PATH_TO_ORTHOMCL = <STDIN>;  
   
print "\nAnd please also specify the pathway to the Muscle alignment software:\n";  
   
$PATH_TO_MUSCLE =<STDIN>;  
   

   

   
if($PATH_TO_ORTHOMCL !~ /\w/)  
{  
    $PATH_TO_ORTHOMCL = "/auto/database/orthomcl/"; #this will act as a default directory when the code 
is run on ORNL computers  
}  
elsif($PATH_TO_ORTHOMCL!~ /^\// || $PATH_TO_ORTHOMCL!~ /\/$/)   
{#this elsif serves in case the user forgets to put a '/' at the front or back of the directory name  
    if($PATH_TO_ORTHOMCL!~ /^\//)  
    {         
        substr($PATH_TO_ORTHOMCL,0,0) = "/";  
    }  
   
    if($PATH_TO_ORTHOMCL!~ /\/$/)  
    {  
        $PATH_TO_ORTHOMCL .= "/";  
    }  
}  
   
if($PATH_TO_MUSCLE !~ /\w/)  
{     
    #No reason to launch a 15-hour OrthoMCL run if you don't have the needed software on the receiving 

end.  
        die "Muscle location not specified\n\n";   
}  
elsif($PATH_TO_MUSCLE!~ /^\// || $PATH_TO_MUSCLE!~ /\/$/)  
{  
    if($PATH_TO_MUSCLE!~ /^\//)  
    {         
        substr($PATH_TO_MUSCLE,0,0) = "/";  
    }  
   
    if($PATH_TO_MUSCLE!~ /\/$/)  
    {  
        $PATH_TO_MUSCLE .= "/";  
    }  
}  
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print "As required by most implementations of OrthoMCL, please ensure that each strain\n";  
print "is represented by its complete set of protein sequences in a separate FASTA file\n";  
print "with the name ending in '.fa' and placed into the OrthoMCL data directory.\n\n";  
   
print "Please specify these files now, each separated by a comma with no spaces:\n\n";  
   
$file_names= <STDIN>;  

   

   
# The following sets of 'if' statements attempt to ensure that the user has formatted the  
# input correctly; it will not catch every error (OrthoMCL is surprisingly particular in   
# this regard) but anything not caught here will be caught by OrthoMCL itself.  
if ($file_names !~ /\.fa/ || $file_names =~ /(\.fasta|\.FASTA|\.faa)/)   
{  
        die "\n\nFile names must be formated 'name.fa'\n\n";  
}  
   
if($file_names !~ /\,+/)  
{  
    die "\n\nYou must input at least two files.n\n";  
}   
   
chomp $file_names;  
$file_names =~ s/ //;  
   
print "\n\nAlso, since the SearchIO feature of BioPerl is a requirement for OrthoMCL\n";  
print "implementation, please specify the path to BioPerl with '\/' at front and back\n\n";  
   
$bioperl_location = <STDIN>;  
chomp $bioperl_location;  
   
if($bioperl_location !~ /^\//)  
{  
    substr($bioperl_location,0,0) = "/";  
}  
   
if($bioperl_location !~ /\/$/)  
{  
    $bioperl_location .= "/";  
}  
   
print "\n\n\n";  
   
# In order, the features of the OrthoMCL command as used for the purpose of creating a pan-genome are:  
#   -I${bioperl_location}: informs OrthoMCL of the BioPerl file location.  
#   orthomcl.pl: the central Perl wrapper script which calls the various algorithms.  
#   --mode 1: OrthoMCL has four different modes; building new protein families requires Mode 1.  
#   --fa_files ${file_names}: tells the OrthoMCL script what to look for in the data directory  

 
`perl -I${bioperl_location} orthomcl.pl --mode 1 --fa_files ${file_names}`; || die "\nCan't run without 
OrthoMCL!\n\n";  
   
$date = `date`;  
   
#the following uses the same method as OrthoMCL to create and name the working directory for a given 

OrthoMCL run  
$ORTHOMCL_WORKING_DIR = $PATH_TO_ORTHOMCL.(split(" ",$date))[1]."_".(split(" ",$date))[2]."/";  
   
print "The path to the working directory is: $ORTHOMCL_WORKING_DIR\n\n\n";  
   
make_path("$ORTHOMCL_WORKING_DIR/R-FAP/"); #create a new directory in the given working directory for 

files related to R-FAP  

   

   
#the following variables contain the paths to various OrthoMCL output files which are needed for the 

next step  
$all_fa = $ORTHOMCL_WORKING_DIR."tmp/all.fa";  
$all_blast = $ORTHOMCL_WORKING_DIR."tmp/all.blast";  
$all_blast_bbh = $ORTHOMCL_WORKING_DIR."all_blast.bbh";  
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$all_blast_score = $ORTHOMCL_WORKING_DIR."R-FAP/all_blast_score.bbh";  
$blast_error = $ORTHOMCL_WORKING_DIR."R-FAP/blast_error.txt";  
$all_orthomcl = $ORTHOMCL_WORKING_DIR."all_orthomcl.out";  
$orthomcl_score_matrices = $ORTHOMCL_WORKING_DIR."R-FAP/orthomcl_score_matrices.txt";  
   
# The following command calls the script which creates the reciprocal score matrices for each   
# cluster created in OrthoMCL. It starts with the raw blast scores and creates a set of normalized  
# scores (raw score divided by sequence length) which are then organized into a series of matrices.  

 
$output = `perl ./Create_OrthoMCL_matrices.pl $all_fa $all_blast $all_blast_bbh $all_blast_score 
$blast_error $all_blast_score $all_orthomcl $orthomcl_score_matrices`;  
print "$output\n";  
   
$final_cluster_lists = $ORTHOMCL_WORKING_DIR."R-FAP/final_cluster_lists.txt";  
   
# The following command takes the matrices which were just created and uses them to tease apart those  
# clusters which either contain multiple protein families or which contain wrongly-included proteins.  
# This script calculates the threshold as the average of all scores in the matrix, and then iterates  
# through each position of the matrix (and its corresponding position on the other side) and compares  
# these scores to the threshold. If they are less than 80% of the threshold, the two corresponding  
# proteins are not considered a match. Clusters are thus teased apart and printed to a list.  

 
`perl ./Split_OrthoMCL_clusters.pl $orthomcl_score_matrices $final_cluster_lists`;  

   
$alignments_directory = $ORTHOMCL_WORKING_DIR."R-FAP/alignments/"; #this will be used for 'make_path'  
$single_occurence_proteins = $ORTHOMCL_WORKING_DIR."R-FAP/single_occurence_proteins.fasta";  
   
# The following command takes the list file created above and pulls the sequences from the complete  
# sequence 'all.fa' file created by OrthoMCL. These are organized in to a set of FASTA files, one  
# for each cluster.  
`perl ./Collect_sequences.pl $all_fa $final_cluster_lists $alignments_directory 
$single_occurence_proteins`;  
   
make_path($alignments_directory."muscle_output/";) #for organization sake, create a new subdirectory 

for all the alignment files  
$muscle_output = $alignments_directory."muscle_output/";  
   
# The following command  calls a script (notice it calls a Python script instead of a Perl script) 
# written by a colleague at ORNL (JJ Chai) which runs the Muscle alignment algorithm on multiple  
# processors in parallel. It has been modified to allow the user to tell it the location of the Muscle  
# software. For these purposes, it is hard-coded to output in Clustal format (".aln").  

 
`python ./Parallelized_muscle.py -d $alignments_directory -o $muscle_output -m $PATH_TO_MUSCLE -p 4`;  
   
$pre_cat_alignments = $muscle_output."*.aln";  
$concatenated_alignments = $muscle_output."all_alignments.txt";  
   
# The following is a bash command which takes all of the alignment files just created and joins them.  
`cat $pre_cat_alignments > $concatenated_alignments`;  

   
$initial_families = $ORTHOMCL_WORKING_DIR."R-FAP/initial_protein_families.fasta";  
   
# The following takes the joint file just created and processes each alignment to produce a consensus  
# sequence to represent each alignement, which in turn represent each protein family with at least two  
# members in the pan-genome. The method for determing consensus is to iterate through every position  
# in a given alignment and determine the most-common residue at every point which isn't universally  
# conserved. The resulting sequences are then printed to a file as the initial pan-genome database.  

 
`perl ./Create_consensus_sequences.pl $concatenated_alignments $initial_families`;  
   

   

   
#-------------------------------------------------------------------------------------------------  
   
# Everything which follows is the final post-processing of the protein families and single-occurence  
# proteins to ensure that every sequence included in the pan-genome database is sufficiently unique  
# so as to minimize spurious matches and thereby, spurious annotation. The method by which this is  
# accomplished is to use the Simrank algorithm to determine the primary and secondary matches of each  
# sequence at 50% similarity or higher; these secondary matches, where they exist, represent two  
# sequences which are too similar to be included in the same database. For the sake of maximum number  
# of possible k-mers in the final database, the method eliminates the shorter of the two sequences.  
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#  
# This method is first applied to the initial set of protein families, using the file as both subject  
# and querey, and then applied to the set of single-occurence proteins.  
   
open(SEQ,$initial_families) || die "Did not open $sequence_filename.\n\n";  
       
$i=0;  
$sequence_name = '';  

   
#first, open the initial protein family FASTA file and create a hash of its sequences...  
while($buf = <SEQ>)  
{  
    chomp $buf;  
       
    if($buf =~ /\>/)  
    {  
     if($i>0)  
     {  
          $Lengths{$sequence_name} = length($Sequences{$sequence_name});  
     }  
   
   $sequence_name = substr $buf, 1;  
       

   
     $sequence = '';  
     $length = 0;  
    }  
    elsif($buf !~ /\>/ && $buf =~ /\w/)  
    {  
     $Sequences{$sequence_name} .= $buf;  
    }  
    else 
    {  
    }  
       
    $i++;  
}  
   
$length_before = scalar (keys %Sequences);  
print "\n\nThe total number of sequences in the initial database is: $length_before.\n\n";  
   
$eliminate_redundant_clusters = new String::Simrank ({ data => $initial_families });  
   
$eliminate_redundant_clusters->formatdb({  wordlen => 10,  
                                  minlen  => 10,  
                                  });  
   
#...then use Simrank to match the initial families against themselves...  
$matches = $eliminate_redundant_clusters->match_oligos( {  

query => $initial_families, #the file of query sequences  
                          outlen => 2, #the number of matches to return for a query sequence  
                          minpct => 50, #the minimum percent similarity to consider a match  
                          silent => true,  
                          valid_chars => 'ABCDEFGHIJKLMNOPQRSTUVWYXZ',  
                        });  
#...then look at the resulting matches.  
foreach $key (keys %{$matches})  
{  
          
    $k = 0;  
    foreach $hit ( @{ $matches->{$key} } )   
    {  
        $gene_name = $key;  
        $match = $hit->[0];  
        $match_percent = $hit->[1];  
       
        # it is reasonable to assume that in almost all cases, the top match for  
        # any sequence will be itself so we're interested in the other match  
        if($key ne $match)  
        {  
            if($Lengths{$key}<=$Lengths{$match})  
                {  
                #delete the shorter one  
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                delete $Sequences{$key};  
                }  
        }  
    }  
}  
   
$length_after = scalar(keys %Sequences);  
print "The total number of protein families after removing redunant sequences: $length_after.\n\n";  
   
$complete_clusters = $ORTHOMCL_WORKING_DIR."R-FAP/final_protein_families.fasta";  
open(PROC, ">$complete_clusters");  
   
foreach $protein (keys %Sequences)  
{  
    print PROC ">$protein\n$Sequences{$protein}";  
}  
   
close PROC;  
undef %Sequences;  
undef %Lengths;  
   
# Now that redundant sequences have been eliminated in the protein families, this must also be   
# done in the so-called single-occurence proteins. This uses the exact same approach as before.  
   
open(SEQ,$single_occurence_proteins) || die "Did not open $sequence_filename.\n\n";  
       
$i=0;  
$sequence_name = '';  
   
#first, open the initial single-occurence protein FASTA file and create a hash of its sequences...  
while($buf = <SEQ>)  
{  
    chomp $buf;  
       
    if($buf =~ /\>/)  
    {  
     if($i>0)  
     {  
          $Lengths{$sequence_name} = length($Sequences{$sequence_name});  
     }  
   
     $sequence_name = substr $buf, 1;  
       

   
     $sequence = '';  
     $length = 0;  
    }  
    elsif($buf !~ /\>/ && $buf =~ /\w/)  
    {  
     $Sequences{$sequence_name} .= $buf;  
    }  
    else 
    {  
    }  
       
    $i++;  
}  

   
$length_before = scalar (keys %Sequences);  
print "\n\nThe total number of sequences in the initial database is: $length_before.\n\n";  
   
$reduce_singles = new String::Simrank ({ data => $single_occurence_proteins });  
   
$reduce_clusters->formatdb({ wordlen => 10,  
                 minlen  => 10,  
               });  
   
#...then use Simrank to match the initial singles against themselves...  
$reduced_matches = $reduce_singles->match_oligos( {  

query => $initial_families,   
                          outlen => 2,  
                          minpct => 50,  
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                          silent => true,  
                          valid_chars => 'ABCDEFGHIJKLMNOPQRSTUVWYXZ',  
                        });  
#...then look at the resulting matches.  
foreach $key (keys %{$reduced_matches})  
{  
          
    $k = 0;  
    foreach $hit ( @{ $matches->{$key} } )   
    {  
        $gene_name = $key;  
        $match = $hit->[0];  
        $match_percent = $hit->[1];  

       
        # it is reasonable to assume that in most cases, the top match for  
        # any sequence will be itself so we're interested in the other match  
        if($key ne $reduced_match)  
        {  
            if($Lengths{$key}<=$Lengths{$match})  
                {  
                #delete the shorter one  
                delete $Sequences{$key};  
                }  
        }  
    }  
}  
   
$length_after = scalar(keys %Sequences);  
print "Total number of single-occurence proteins after removing redunant sequences: 
$length_after.\n\n";  
   
$reduced_singles = $ORTHOMCL_WORKING_DIR."R-FAP/reduced_singles.fasta";  
open(RED, ">$reduced_singles");  
   
foreach $protein (keys %Sequences)  
{  
    print RED ">$protein\n$Sequences{$protein}";  
}  
   
close RED;  
undef %Sequences;  
undef %Lengths;  
   

   
# Now that we've eliminated the redundant sequences in the protein families, we must do the same for  
# the single-occurence proteins to ensure that we do not include any sequences which were incorrectly  
# exclused from one of the protein families. This is much more conceptually simple: if it matches a   
# protein family consensus sequence above 50% similarity, it is eliminated.  
 

open(SINGLE, $reduced_singles);  
   
while($buf=<SINGLE>)  
{  
    chomp $buf;  
       
    if($buf =~ /\>/)  
    {  
   
     $sequence_name = substr $buf, 1;  
       
     $sequence = '';  
     $length = 0;  
    }  
    elsif($buf !~ /\>/ && $buf =~ /\w/)  
    {  
     $Sequences{$sequence_name} .= $buf;  
    }  
    else 
    {  
    }  
}  
   
$eliminate_redundant_singles = new String::Simrank ({ data => $complete_clusters });  
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$eliminate_redundant_singles->formatdb({  wordlen => 10,  
                        minlen  => 10,  
                          });  
   
$single_matches = $eliminate_redundant_singles->match_oligos( {  

query => $reduced_singles,  
                          outlen => 1,  
                          minpct => 50,  
                          silent => true,  
                          valid_chars => 'ABCDEFGHIJKLMNOPQRSTUVWYXZ',  
                          });  
   
foreach $key (keys %{$single_matches})  
{  
    if( @{ $matches->{$key} } != '')  
    {  
    delete $Sequences{$key};  
    }  
          
}  

   
open(FINAL,">>$complete_clusters");  
   
foreach $sequence (keys %Sequences)  
{  

# Append the final set of single-occurence proteins to the file already containing the final set  

# of protein families and this becomes our final pan-genome database. It is now ready to be  

# implemented as the user sees fit.  
    print FINAL ">$sequence\n$Sequences{Sequence}";   
}  
   
close FINAL;  
   

   
$end_time = `date`;  
$end_seconds = time;  
$run_seconds = $end_seconds-$start_seconds;  
$run_hours = $run_seconds/3600;  
   
print "\n\nStarted at: $start_time\nEnded at: $end_time\nTotal run time (hours): $run_hours\n\n";  
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Appendix D: The R-FAP Annotation Tool Source Code 

#!/usr/bin/perl 

  
$start_time = localtime(time); 

print "Started at $start_time\n\n"; 

  
use Getopt::Long; 

use lib 'lib'; 

use String::Simrank; 

use autodie; 

use File::Path qw(make_path remove_tree); 

  
print "\n--------------------------------------------------------------------------------\n"; 

print "Welcome to the main Rapid Functional Annotation of Prokaryotes (R-FAP) tool.\n"; 

print "database builder. This software will take the complete gene translations from a\n"; 

print "set of selected strains and provide annotations for them in under a minute.\n"; 

print "--------------------------------------------------------------------------------\n\n\n"; 

  
print "Please provide the full path to the directory of the .faa files to be annotated:\n"; 

  
$operating_directory = <STDIN>; 

  
if($operating_directory !~ /\w/) #exit if user provides no directory 

{    

        die "You must specify where to find the input files!\n\n";  

} 

elsif($operating_directory!~ /^\// || $operating_directory!~ /\/$/) 

{#in case user forgets to include the '/' at the beginning or end 

    if($operating_directory !~ /^\//) 

    {        

        substr($operating_directory,0,0) = "/"; 

    } 

  
    if($operating_directory !~ /\/$/) 

    { 

        $operating_directory .= "/"; 

    } 

} 

  
#these two 'make_path' commands create the subdirectories for the output files 

make_path($operating_directory."annotation_files/"); 

make_path($operating_directory."unmatched_sequence_files"); 

  
print "Next, please enter the full path to the FASTA-formatted pan-genome database\n"; 

print "which will be used to match query proteins to their appropriate annotations:\n\n"; 

  
$pangenome_filepath = <STDIN>; 

  
if($pangenome_filepath !~ /\w/)  

{    

        die "You must specify where to find the database files!\n\n";  

} 

elsif($pangenome_filepath !~ /^\//) 

{        

    substr($pangenome_filepath,0,0) = "/"; 

} 

  
print "\nNow, please specify the full path to the three-column annotation source\n"; 

print "file. (It would probably be best to make sure its located in the operating\n"; 

print "directory, but in either case you need to enter the full path to it here.)\n\n"; 

  
$annotation_filename = <STDIN>; 

  
if($annotation_filename !~ /\w/) 

{ 

    die "You must provide a source of annotations!\n\n"; 

} 

elsif($annotation_filename !~ /^\//) 

{        

    substr($annotation_filename,0,0) = "/"; 

} 

  
open(ANNO,$annotation_filename) || die "Could not open $annotation_filename\n\n"; 

$anno_iterator = 0; 
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# This loop iterates through the annotation file, which is a three-column, tab-delimited 

# file of basic annotation for each gene and the tool used to determine it 

 

while($buf = <ANNO>) 

{ 

    chomp $buf; 

    if($anno_iterator > 0) 

    { 

     ($protein,$id_tool,$annotation) = split(/\t/, $buf); 

      

     if($id_tool !~ /\w/) 

  { 

          $id_tool = ""; 

     } 

  
     $Annotation_hash{$protein} = "$id_tool\t$annotation"; 

    } 

    $anno_iterator++; 

} 

  
# Below are the commands which declare a new Simrank object and create a new binary database file 

$sr = new String::Simrank ({ data => $pangenome_filepath }); 

if ($cl_args->{"rebuild"} || !$sr->{binary_ready} )  

{ 

     $sr->formatdb({  wordlen => 10, 

              minlen  => 10, 

            }); 

} 

  
$i=0; 

  

  
# This loop will iterate through all of the '.faa' files in the specified directory and annotate them 

 

while (defined($sequence_filename = glob $operating_directory.'*.faa'))  

{ 

     

    open(SEQ,$sequence_filename) || die "Did not open $sequence_filename.\n\n"; 

          

    $sequence_name = ''; 

      

    while($buf = <SEQ>) 

    { 

     chomp $buf; 

      

     if($buf =~ /\>/) 

     {        

          $sequence_name = substr $buf, 1; 

          $sequence = ''; 

          $length = 0; 

     } 

     elsif($buf !~ /\>/ && $buf =~ /\w/) 

     { 

         $Sequences{$sequence_name} .= $buf; 

     } 

     else 

     { 

     } 

    } 

    close SEQ; 

      

    $number_of_query_genes = scalar(keys %Sequences); 

    $current_time = localtime(time); 

    print "\nStarted at $start_time\nCurrent time is $current_time\n\n"; 

    print "Number of genes in $sequence_filename = $number_of_query_genes\n"; 

      

    #30% appears to be the lowest point at which accuracy is still maintained at 100% 

    $minimum_match_percentage = 30; 

  
    #this is actually just a count of the number of secondary matches found by Simrank 

    $number_of_false_positives = 0;  

  
    #this is actually just a percentage of the total proteins in a genome which Simrank doesn't find 

    $false_negative_rate = 0;  

      

    $j=0; 

    $number_of_false_positives = 0; 



www.manaraa.com

 
52 

    undef %Match_list; 

    undef @putative_new_genes; 

      

    # The following command calculates the match between each query protein and each sequence 

    # in the search database; these matches are sorted most- to least-similar and retunred as 

    # a hash (specifically, a hash of arrays) 

    $matches = $sr->match_oligos( { query => $sequence_filename, 

                    outlen => 2, 

                    minpct => $minimum_match_percentage, 

                    silent => true, 

                    valid_chars => 'ABCDEFGHIJKLMNOPQRSTUVWYXZ', 

                  }); 

      

    # Once this hash has been created, one must step through it protein at a time; each query 

    # protein has an entry in the hash, even if it didn't match anything in the database. 

    foreach $key (keys %{$matches}) 

    { 

    #this 'if' tests to see if a protein's entry in the hash is blank; if it is, then it 

    #didn't match to anything in the database above the specified similarity threshold. 

    if( @{ $matches->{$key} } == '') 

    { 

        push(@putative_new_genes, $key); 

    } 

      

    $k = 0; 

    foreach $hit ( @{ $matches->{$key} } )  

    { 

        $gene_name = $key; 

        $match = $hit->[0]; 

        $match_percent = $hit->[1]; 

          

        if($k==0) #this indicates the first (and therefore best) match 

        { 

          $Match_list{$gene_name} .= "$gene_name\t$Annotation_hash{$match}"; 

        } 

        elsif($k>0) #even if this is ever true, it represents a spurious match 

        { 

          $number_of_false_positives++ 

        } 

          

        $k++; 

    } 

    $j++; 

    } 

      

    $number_of_matched_genes = scalar(keys %Match_list); 

      

    #the following calculates the 'miss rate' by dividing the number which ACTUALLY matched 

    #at or above the given threshold from the total number of proteins searched. 

    $false_negative_rate = 100*(1-($number_of_matched_genes/$number_of_query_genes)); 

    $i++; 

    print "Currently on genome $i of 100\n\tMissed rate = $false_negative_rate\n"; 

    print "\tNumber of secondary matches = $number_of_false_positives\n"; 

      

    $short_input_filename_start = rindex($sequence_filename,"/"); 

    $short_input_filename = substr($sequence_filename,$short_input_filename_start); 

      

    while($short_input_filename =~ /\./) 

    { 

     chop $short_input_filename; 

    } 

      

    #create the output file from the input file name 

    $final_output_filename = 

$operating_directory."annotation_files/".$short_input_filename."_annotation.txt"; 

    open(OUT, ">$final_output_filename") || die "Could not create and/or open 

$final_output_filename.\n\n"; 

      

    #create the name for the FASTA file of unmatched proteins 

    $unmatched_genes_filename = 

$operating_directory."unmatched_sequence_files/".$short_input_filename."_unmatched.fasta"; 

    open(UNMATCHED, ">$unmatched_genes_filename") || die "Could not create and/or open 

$unmatched_genes_filename.\n\n"; 

      

    print OUT "Protein\tID_tool\tAnnotation\n"; 

    foreach $gene (keys %Match_list) 

    { 
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     print OUT "$Match_list{$gene}\n"; #note that this is formatted like the annotation file 

    } 

      

    close OUT; 

      

      

    for($k=0;$k<scalar(@putative_new_genes);$k++) 

    { 

     print UNMATCHED ">$putative_new_genes[$k]\n$Sequences{$putative_new_genes[$k]}\n"; 

    } 

  
    close UNMATCHED; 

      

    #it's important to 'undef' (erase) these data structures each time 

    undef @putative_new_genes; 

    undef %Match_list; 

    undef %Sequences; 

  
} 

      

$current_time = localtime(time); 

print "\n\nStarted at $start_time\nFinished at $current_time\n\n\n"; 
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